72 resultados para Emeishan large igneous province
Resumo:
Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.
Resumo:
This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.
Resumo:
A linear stability analysis is applied to determine the onset of oscillatory thermocapillary convection in cylindrical liquid bridges of large Prandtl numbers (4 <= Pr <= 50). We focus on the relationships between the critical Reynolds number Re-c, the azimuthal wave number m, the aspect ratio F and the Prandtl number Pr. A detailed Re-c-Pr stability diagram is given for liquid bridges with various Gamma. In the region of Pr > 1, which has been less studied previously and where Re, has been usually believed to decrease with the increase of Pr, we found Re-c exhibits an early increase for liquid bridges with Gamma around one. From the computed surface temperature gradient, it is concluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic axisymmetric thermocapillary convection at large Prandtl number, and that the stability property of the basic flow is determined by the "effective" part of liquid bridge. (c) 2008 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
In this paper, the thermocapillary motion problem of drops is investigated using the axisymmetric model. The front-tracking method is employed to capture the drop interface. We find that the migration velocity of the drop is greatly influenced by the temperature field in the drop when Ma is fairly large (>100), which leads to an increase-decrease migration velocity at the beginning of our simulations. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Linear stability analysis was performed to study the mechanism of transition of thermocapillary convection in liquid bridges with liquid volume ratios ranging from 0.4 to 1.2, aspect ratio of 0.75 and Prandtl number of 100. 2-D governing equations were solved to obtain the steady axi-symmetric basic flow and temperature distributions. 3-D perturbation equations were discretized at the collocation grid points using the Chebyshev-collocation method. Eigenvalues and eigenfunctions were obtained by using the Q-R. method. The predicted critical Marangoni numbers and critical frequencies were compared with data from space experiments. The disturbance of the temperature distribution on the free surface causes the onset of oscillatory convection. It is shown that the origin of instability is related to the hydrothermal origin for convections in large-Prandtl-number liquid bridges. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.
Resumo:
A thick amorphous alloy (a-alloy) coating was synthesized by laser cladding. The a-alloy had a multicomponent chemistry, i.e., Ni66Cr5MO4Zr6P15B4 (in atom%). The maximum thickness of the coating is 0.8 mm. The a-alloy coating had large glass-forming ability (GFA) with wide supercooled liquid region (SLR) ranging from 52 to 61 K through the coating. The reason for high GFA in the a-alloy coating was discussed. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The effect of subgrid-scale (SGS) modeling on velocity (space-) time correlations is investigated in decaying isotropic turbulence. The performance of several SGS models is evaluated, which shows superiority of the dynamic Smagorinsky model used in conjunction with the multiscale large-eddy simulation (LES) procedure. Compared to the results of direct numerical simulation, LES is shown to underpredict the (un-normalized) correlation magnitude and slightly overpredict the decorrelation time scales. This can lead to inaccurate solutions in applications such as aeroacoustics. The underprediction of correlation functions is particularly severe for higher wavenumber modes which are swept by the most energetic modes. The classic sweeping hypothesis for stationary turbulence is generalized for decaying turbulence and used to analyze the observed discrepancies. Based on this analysis, the time correlations are determined by the wavenumber energy spectra and the sweeping velocity, which is the square root of the total energy. Hence, an accurate prediction of the instantaneous energy spectra is most critical to the accurate computation of time correlations. (C) 2004 American Institute of Physics.
Resumo:
An axisymmetric model is adopted to simulate the problem of unsteady drop thermocapillary motion for large Marangoni numbers. Front tracking methods are used in the investigation. It is found that the non-dimensional drop migration velocity will decrease with increasing Marangoni number. This agrees well with the experimental results obtained from the 4th Shen-Zhou space ship. In the meanwhile, this is also the first time for numerical simulations to verify the experimental phenomenon under large Marangoni numbers.
Resumo:
A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60 degrees type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.
Resumo:
According to the experimental results, there exist large-scale coherent structures in the outer region of a turbulent boundary layer, which have been studied by many authors.As experimental results, Antonia (1990) showed the phase- aver aged streamlines and isovorticity lines of the large-scale coherent structures in a turbulent boundary layer for different Reynolds numbers. Based on the hydrodynamic stability theory, the 2-D theoretical model for the large-scale structures was proposed by Luo and Zhou, in which the eddy viscosity was defined as a complex function of the position in the normal direction. The theoretical results showed in ref. were in agreement with those in ref. However, there were two problems in the results. One is that in the experimental results, there were divergent focuses between two saddle points in the streamlines, but in the theoretical results, there were centers. The other is that the stretched parts of the isovorticity lines appear at the location of centers in the theoretical results, while in the experimental results they located somewhere between the focuses and saddle points. The reason is that the computations were based on a 2-D model.
Resumo:
This paper presents a micromechanics analysis of the elastic solids weakened by a large number of microcracks in a plane problem. A new cell model is proposed. Each cell is an ellipse subregion and contains a microcrack. The effective moduli and the stress intensity factors for an ellipse cell are obtained. The analytic closed formulas of concentration factor tensor for an isotropic matrix containing an anisotropic inclusion are derived. Based on a self-consistent method, the effective elastic moduli of the solids weakened by randomly oriented microcracks are obtained.
Resumo:
Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.
Resumo:
Plastic stress-strain fields of two types of steel specimens loaded to large deformations are studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to have substantial effects on strain distributions and blunting. To justify the constitutive equations used for analysis and to check the precision of computations, the load-deflection of a three-point bend beam and the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The computed curves are in good accordance with experimental data.
Resumo:
A new aerodynamic principle of flame stabilization and combustion intensification, the coflow jets with large velocity difference, is described. One or more small high-velocity jets of air or steam, injected off the axis and in the same direction as the low-velocity main fuel-air flow into the combustor, create a large recirculation zone of high turbulence intensity in which the combustibles and high temperature gases are effectively mixed, so that stable and intensive combustion can be maintained even for fuels with poor ignition. A pulverized coal combustor based on the principle mentioned above is shown to be characteristic of excellent combustoom and a simple structure. A number of precombustors of this type are in operation at some power stations and industrial boilers of China. Using such precombustor, successtul startups and part-load operation of the boilers have become available under conditions of unpreheated air and low-grade coal with volatiles as low as 15% and ash content as high as 30%. This principle shows good promise as an attractive new technology of combustion.