89 resultados para Elliptic Variational Inequatilies
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.
Resumo:
The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.
Resumo:
A variational method is developed to find approximate solutions to the generalized Grad-Shafranov equations for an adiabatic compression of the plasma with toroidal rotation, via the expansion in Fourier series in poloidal angle of the flux surface coordinates. The numerical results, which are carried out by the present method and by the usual two-dimensional method for a static equilibrium state, agree well.
Resumo:
An analytical method for determining slip shear rate under prescribed stress rate or prescribed strain rate has been presented on the basis of the incremental theory of crystal plasticity. The problem has been reduced to a quadric convex programming.In order to analyse the plastic response of crystals subjected to external load, two new extremum principles are proposed. They are equivalent to the boundary-value problem of crystal plasticity. By the new extremum principles, the slip shear rates are independent function which can be obtained from the variational equation.
Resumo:
The variational approach to the closure problem of turbulence theory, proposed in an earlier article [Phys. Fluids 26, 2098 (1983); 27, 2229 (1984)], is extended to evaluate the flatness factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in the perturbation solution of the Liouville equation have to be considered. Most closure methods discard these higher-order terms and fail to explain the intermittency phenomenon. The computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15 and has the same order of magnitude as the experimental data of real turbulent flows. The intermittency phenomenon does not necessarily negate the Kolmogorov k−5/3 inertial range spectrum. The Kolmogorov k−5/3 law and the high degree of intermittency can coexist as two consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory [J. Fluid Mech. 62, 305 (1974)] cannot be disqualified merely because the energy dissipation rate fluctuates.
Resumo:
Using the approach of local expansion, we analyze the magnetostatic relations in the case of conventional turbulence. The turbulent relations are obtained consisten tly for themomentum equation and induction equation of both the average and fluctuation relations.In comparison with the magnetostatic relations as discussed usually, turbulent fluctuationfields produce forces, one of which 1/(4π)(α1×B0)×B0 may have parallel and perpendicular components in the direction of magnetic field, the other of which 1/(4π)K×B0 is introduced by the boundary value of turbulence and is perpendicular to the magnetic field. In the case of 2-dimensional configuration of magnetic field, the basic equation will be reduced into a second-order elliptic equation, which includes some linear and nonlinear terms introduced by turbulent fluctuation fields. Turbulent fields may change the configuration of magnetic field and even shear it non-uniformly. The study on the influence of turbulent fields is significant since they are observed in many astrophysical environments.
Resumo:
The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.
Resumo:
Classical statistical mechanics is applied to the study of a passive scalar field convected by isotropic turbulence. A complete set of independent real parameters and dynamic equations are worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville equation is solved by a perturbation method based upon a Langevin–Fokker–Planck model. The closure problem is treated by a variational approach reported in earlier papers. Two integral equations are obtained for two unknown functions: the scalar variance spectrum F(k) and the effective damping coefficient (k). The appearance of the energy spectrum of the velocity field in the two integral equations represents the coupling of the scalar field with the velocity field. As an application of the theory, the two integral equations are solved to derive the inertial-convective-range spectrum, obtaining F(k)=0.61 −1/3 k−5/3. Here is the dissipation rate of the scalar variance and is the dissipation rate of the energy of the velocity field. This theoretical value of the scalar Kolmogorov constant, 0.61, is in good agreement with experiments.
Resumo:
The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.
Resumo:
An attempt is made to determine the form of F(x), the dimensionless function of universal nature which occurs in the energy spectrum for the universal equilibrium range of fully developed turbulence, by the method of statistical mechanics without introducing any parameter of semiempirical nature. Then, the validity of the variational approach to the closure problem of turbulence theory is tested by applying it to the study of the universal equilbrium range of turbulence.
Resumo:
In this paper, we mainly deal with cigenvalue problems of non-self-adjoint operator. To begin with, the generalized Rayleigh variational principle, the idea of which was due to Morse and Feshbach, is examined in detail and proved more strictly in mathematics. Then, other three equivalent formulations of it are presented. While applying them to approximate calculation we find the condition under which the above variational method can be identified as the same with Galerkin's one. After that we illustrate the generalized variational principle by considering the hydrodynamic stability of plane Poiseuille flow and Bénard convection. Finally, the Rayleigh quotient method is extended to the cases of non-self-adjoint matrix in order to determine its strong eigenvalne in linear algebra.
Resumo:
针对激光辐照热障涂层材料的平面应变问题,提出热障涂层热弹性分析的基本方程,对定常温度场给出级数形式解析解,并用最小余能原理和变分法分析了结构的热弹性应力场,研究了最大应力和界面应力的分布特征,并就一些物理参数的影响进行了讨论.结果表明,热障涂层的主要破坏因素为表面拉伸应力,界面应力相对较小,但在自由边界有集中现象,剥落应力大于剪切应力,是导致涂层破坏的重要原因.涂层厚度增加会改变厚度方向上的应力分布,界面应力向中心集中.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.