48 resultados para Electrospinning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report for the first time on the synthesis of ZnO nanocrystallites in conjugated polymer (PPV) nanofibers by the coupling of the in situ/blend methods and electrospinning. These composite nanofibers were characterized by fluorescence microscopy, atomic force microscope (AFM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

8YSZ fibers were synthesized by calcination of PVP/zirconium oxychloride/yttrium nitrate composite fibers (PVP-Precursor) obtained by electrospinning. Scanning electron microscopy (SEM) indicated that the 8YSZ fibers are hollow and the gas released during organic binder decomposition resulted in the formation of hollow center in fibers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were synthesized by the combination of electrospinning and thermal treatment processes. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that spherical Pd nanoparticles (NPs) are well-dispersed on the surfaces of CNFs or embedded in CNFs. X-ray diffraction (XRD) pattern indicates that cubic phase of Pd was formed during the reduction and carbonization processes, and the presence of Pd NPs promoted the graphitization of CNFs. This nanocomposite material exhibited high electric conductivity and accelerated the electron transfer, as verified by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 mu M, 2 mu M and 0.2 mu M for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04-5.6 mu M, 2-64 mu M and 0.8-16.8 mu M, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinel ferrite, MFe2O4 (M = Co, Ni), ribbons with nanoporous structure were prepared by electrospinning combined with sol-gel technology. The ribbons were formed through the agglomeration of magnetic nanoparticles with PVP as the structure directing template. The length of the polycrystalline ribbons can reach millimeters, and the width of the ribbons can be tuned from several micrometers to several hundred nanometers by changing the concentration of precursor. The nanoporous structure was formed during the decomposition of PVP and inorganic salts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hollow carbon nanofibers with circular and rectangular opening were prepared by using electrospun silica fibers as templates. Silica fibers were synthesized by electrospinning, and they were coated with a carbon layer formed by thermal decomposition and carbonization of polystyrene under a nitrogen atmosphere. Hollow carbon nanofibers with circular and rectangular openings were then obtained after the silica core was etched by hydrofluoric acid. The carbon nanofibers with different morphologies also could be used as templates to fabricate silicon carbide fibers. The silicon carbide fibers with circular and rectangular openings could be obtained by using hollow carbon nanofibers and carbon belts as templates, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we developed an electrochemical method for the detection of hydrazine based oil palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF-GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well-defined oxidation peak appeared at -0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF-GCE was also studied, which demonstrated an irreversible diffusion-controlled electrode process and a four-electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu3+) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N-2 adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of "emulsion-electrospinning", both hydrophobic and hydrophilic drugs, paclitaxel (PTX) and doxorubicin hydrochloride (DOX), were successfully loaded into PEG-PLA nanofiber mats to realize multi-drug delivery. The release behaviors of both the drugs from the same fiber mats were ascribed to their solubility properties and distribution status in the fibers. Due to its high hydrophilicity, DOX was easy to diffuse out from the fibers, and its release rate was always faster than that of hydrophobic PTX. Moreover, the release rate of PTX was accelerated by DOX's release from the same drug-loaded fibers. In vitro cytotoxicity against rat Glioma C6 cells indicated that the dual drug combination showed a higher inhibition and apoptosis against C6 cells than a single drug-loaded system, which suggests the promise for multi-drug delivery on combination therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt ferrite one-dimensional nanostructures (nanoribbons and nanofibers) were prepared by electrospinning combined with sol-gel technology. The nanoribbons and nanofibers were formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) (PVP) as the structure-directing template. Nanoribbons and nanofibers were obtained after calcining the precursor nanoribbons at different temperatures. Successive Ostwald ripening processes occur during the formation of CoFe2O4 nanoribbons and nanofibers. The sizes of nanoparticles varied with calcination temperatures, which leads to different one-dimensional structures and variable magnetic properties. These novel magnetic one-dimensional structures can potentially be used in nanoelectronic devices, magnetic sensors, and flexible magnets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanowires of SiC were synthesized by carbothermally reducing PVP/TEOS composite fibres obtained by electrospinning. High-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) indicated that the SiC nanowires are single crystalline in nature. Both Fourier-transformed infrared spectroscopy and HRTEM indicated that a thin layer of SiO2 was formed on the outer surface of the nanowire as a result of post-heat treatment for the removal of residual carbon. Such SiO2 layer protects the inner SiC fibre from further oxidation. The formation mechanism of single-crystalline SiC nanowires was proposed based on our understanding and characterizations. The growth of the nanowire is believed to be along the ( 111) of its cubic cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer.