53 resultados para Electromagnetic filters
Surface plasmon resonance transmission filters at 1053 nm based on metallic grating with narrow slit
Resumo:
Metallic gratings with narrow slits can lead to special optical properties such as strongly enhancing the transmission and considerably strengthening the polarized effect. A narrow-band filter suitable for application in optical communication is designed by sandwiching a metallic grating between two identical dielectric films. The maximum transmission can reach 96% after optimizing the parameters of films and grating at a central wavelength of 1053 nm. It is the first time, to our knowledge, that such high transmission has been reported since the discovery of the extraordinarily high transmission through periodic holes or slits; moreover, the extremely polarized effect is also found in P mode of this symmetric grating.
Resumo:
In the present study, we examined the effects of extremely low-frequency (ELF) electromagnetic fields on morphine-induced conditioned place preferences in rats. During the conditioning phase (12 days), three groups of rats were placed in a sensory cue-defined environment paired with morphine (10 mg/kg, i.p.) following exposure to either 20 Hz (1.80 mT) or 50 Hz (2.20 mT) or sham electromagnetic fields for 60 min/day, respectively, and were placed in another sensory cue-defined environment paired with physiological saline (1 ml/kg, i.p.) without exposure to electromagnetic fields. After finishing 12 days of conditioning, preference tests for the morphine-paired place were performed during a 10-day withdrawal period. The exposure to electromagnetic fields substantially potentiated morphine-induced place preferences in rodents, suggesting that ELF electromagnetic fields can increase the propensity for morphine-induced conditioned behaviors. (C) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the effect of extremely low-frequency electromagnetic field (ELF-EMF) exposure during morphine treatment on dopamine D2 receptor (D2R) density in the rat dorsal hippocampus following withdrawal. Rats were exposed t
Resumo:
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in porpoises Phocoena phocoena and Neophocaena phocaenoides asiaeorientalis. The EFR was evoked by amplitude-modulated probes with a modulation rate of 1000 Hz and carrier frequencies from 22.5 to 140 kHz. Equivalent rectangular quality Q(ERB) of the obtained tuning curves varied from 8.3-8.6 at lower (22.5-32 kHz) probe frequencies to 44.8-47.4 at high (128-140 kHz) frequencies. The QERB dependence on probe frequency could be approximated by regression lines with a slope of 0.83 to 0.86 in log-log scale., which corresponded to almost frequency-proportional quality and almost constant bandwidth of 34 kHz. Thus, the frequency representation in the porpoise auditory system is much closer to a constant-bandwidth rather that to a constant-quality manner. (c) 2006 Acoustical Society of America.
Resumo:
Transmission of an electromagnetic wave from a heavily doped n-type GaAs film is studied theoretically. The calculations are performed using the two-dimensional finite-different time-domain method. From the calculations, we find the extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies. By determining a set of groove parameters, we optimize the transmission to as high as 55.2%. We ascribe this extraordinary transmission to the coupling of the surface-plasmon polariton modes and waveguide modes. Such an enhanced transmission device can be useful for mid-infrared wave filters, emitters, and monitors.
Resumo:
We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.
Resumo:
Wide transmission dips are observed in the through spectra in microring and racetrack channel drop filters by two-dimensional finite-difference time-domain (FDTD) simulation. The transmission spectra, which reflect the coupling efficiency, are also calculated from the FDTD output as the pulse just travels one circle inside the resonator. The results indicate that the dips are caused by the dispersion of the coupling coefficient between the input waveguide and the resonator. In addition, a near-zero channel drop on resonance and a large channel drop off resonance are observed due to the near zero coupling coefficient and a large coupling coefficient, respectively. If the width of the input waveguide is different from that of the ring resonator, the oscillation of the coupling coefficient can be greatly suppressed.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:05:17Z No. of bitstreams: 1 High-Order Microring Filters on SOI Wafer.pdf: 236326 bytes, checksum: dea85274da2a205a54b8a46049db9c94 (MD5)
Resumo:
A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.