373 resultados para Elastomer Blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ring-banded spherulites in liquid crystalline poly(aryl ether ketone) (LC-PAEK) and poly(aryl ether ether ketone) (PEEK) blends with a higher content (>50%) of LC-PAEK are investigated by polarizing light microscopy (PLM) and atomic force microscopy (AFM) techniques. The results indicate that the light core and rings of the ring-banded spherulites under PLM are mainly composed of an LC-PAEK phase, while the dark rings consist of coexisting phases of PEEK and a small amount of LC-PAEK. The formation of the ring-banded spherulites is attributable to structural discontinuity caused by a rhythmic radial growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to clarify the effects of phenols on properties of polyesters, the blends of poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) with 4,4'-dihydroxydiphenylpropane (BPA) and p-tert-butylphenol (TBP) were studied. The FTIR spectra revealed that there was strong hydrogen-bond (H-bond) interaction between PHBV and both phenols. By evaluating the fraction of H-bonded C = O in the blend, it was concluded that BPA showed a stronger tendency than TBP to form H-bonds with PHBV. Accordingly, BPA formed a stronger suppression than TBP on the crystallization of PHBV. When 30 wt% BPA or 50 wt% TBP were added into PHBV, the crystallization of PHBV was completely suppressed in the DSC cooling scan. As the phenol content was increased, the T-g of PHBV/TBP blend decreased while the T-g of PHBV/BPA blend increased. This difference indicated that TBP and BPA acted as plasticizer and physical crosslinking agent, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation by FTIR spectroscopy was undertaken on blends of poly(propylene carbonate) (PPC) and bisphenol A (BPA). It provided direct evidence of the hydrogen bond (H-bond) between BPA O-H groups and PPC C=O groups. Using a curve-fitting method, qualitative as well as quantitative information concerning this H-bond interaction was obtained. The inter-H-bond in PPC/BPA blends was weaker than the self-H-bond in BPA. The absorptivities of the free and the H-bonded C=O groups were nearly equal. The fraction of H-bonded C=O in the blends increased with BPA content and leveled off at a value close to 40%. Finally, FTIR-temperature measurements of pure PPC and a representative blend were reported: by monitoring the peak areas of C=O absorptions, the dissociation of the inter-H-bonds and the thermal degradation of PPC were observed. It revealed that the presence of BPA clearly retarded the thermal degradation of PPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylene-polystyrene blends were synthesized by in situ ethylene polymerization with polystyrene porous beads supported metallocene; the influence of fragmenting support beads on the morphology and the mechanical performance of the blends was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290degreesC and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, T-g of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was theoretically pointed out that the product of the yield stress and yield strain of matrix polymer that determined the brittle-ductile transition (BDT) of particle toughened polymers. For given particle and test condition, the higher the product of the yield stress and the yield strain of the matrix polymer, the smaller the critical interparticle distance (IDc) of the blends was. This was why the IDc (0.15 mum) of the polypropylene (PP)/rubber blends was smaller than that (0.30 mum) of the nylon 66/rubber blends, and the IDc of the nylon 66/rubber blends was smaller than that (0.60 mum) of the high density polyethylene (HDPE)/rubber blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP-g-MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide-angle X-ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP-g-MAH-g-PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have followed the morphological evolution and crystallization process of spherical micelles formed by the mixture of polystyrene-b-poly(acrylic acid) (PS-b-PAA) and polystyrene-b-poly(2-vinylpyridine)b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) (the core of the spherical micelles was made of P2VP and PAA blocks through hydrogen bonding in neutral solvent N,N-dimethylformamide, DMF) via DMF vapor treatment. Different phenomena, such as rupture of the film, formation of cylinder aggregates and regular square lamellae, were observed when the micelle film was treated in DMF for different times. At the early stage of annealing in DMF vapor, the micelle film became unstable and ruptured. Cylinder aggregates, within which the PEO blocks achieved the association and primary chain folding, formed as the mesophases before the nucleation of the PEO single crystals at this stage. Further treatment in DMF vapor resulted in the nucleation of the PEO blocks at the corners of quasi-square lamellae. Then a quite regular "sandwich" lamellar structure, constructed by a PEO single-crystal layer covered by two tethered layers of other amorphous blocks on the top and bottom crystal basal surfaces, formed when the film of micelles was annealed in DMF vapor for sufficient times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of biodegradable, thermoplastic polyurethane elastomers poly (epsilon-caprolactone-co-lactide)polyurethane [PCLA-PU] were synthesized from a random copolymer Of L-lactide (LA) and epsilon-caprolactone (CL), hexamethylene diisocyanate, and 1,4-butanediol. The effects of the LA/CL monomer ratio and hard-segment content on the thermal and mechanical properties of PCLA-PUs were investigated. Gel permeation chromatography, IR, C-13 NMR, and X-ray diffraction were used to confirm the formation and structure of PCLA-PUs. Through differential scanning calorimetry, tensile testing, and tensile-recovery testing, their thermal and mechanical properties were characterized. Their glass-transition temperatures were below -8 degrees C, and their soft domains became amorphous as the LA content increased. They displayed excellent mechanical properties, such as a tensile strength as high as 38 MPa, a tensile modulus as low as 10 MPa, and an elongation at break of 1300%. Therefore, they could find applications in biomedical fields, such as soft-tissue engineering and artificial skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the dynamic rheological behavior of polypropylene/polyamide6 (PP/PA6) uncompatibilized blends and those compatibilized with a maleic anhydride grafted PP (PP/PP-g-MAH/PA6). The terminal relaxation times of the blends predicted by the Palierne emulsion model were compared with those obtained from experimental relaxation time spectra. The Palierne model succeeded well in describing PP/PA6 uncompatibilized blends with relatively low dispersed phase contents (10 wt%) and failed doing so for those of which the dispersed contents were high (30 wt%). It also failed for the compatibilized ones, irrespective of the dispersed phase content (10 or 30 wt%) and whether or not interface relaxation was taken into consideration. In the case of the uncompatibilized blend with high dispersed-phase content, interconnections among inclusions of the dispersed phase were responsible for the failure of the Palierne model. As for the compatiblized blends, in addition to particle interconnections, the existence of emulsion-in-emulsion (EE) structures was another factor responsible for the failure of Palieme model.