48 resultados para Effective lens position
Resumo:
A scheme of combining technology of lens array (LA) and smoothing by spectral dispersion (SSD) is introduced to improve the irradiation uniformity in laser fusion based on the earlier works on LA. The feasibility of the scheme is also analyzed by numerical simulation. It shows that a focal pattern with flat-top and sharp-edge profile could be obtained, and the irradiation nonuniformity can fall down from 14% with only LA to 3% with both SSD and LA. And this smoothing scheme is depended less on the incidence comparing to other smoothing methods. The preliminary experiment has demonstrated its effectiveness. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Starting from the Huygens-Fresnel diffraction integral, the propagation equations of a broadband laser passing through a dispersive lens and a dispersive wedge are derived. Smoothing effect on the side lobes of the focused pattern is achieved as the broadband laser passes through the lens because of the spectral dispersion of the lens. By inserting a dispersive wedge behind the lens, better smoothing effect is realized because a relative position shift between focused patterns of different frequency components is generated due to the spectral dispersion of the wedge. Smoothing effect on the side lobe is obtained even with small bandwidth of the broadband laser as the wedge is used. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
利用二维光谱色散平滑技术和透镜列阵(LA)来改善激光驱动器中靶面的辐照均匀性。通过消衍射透镜列阵可得到包络陡峭且中小空间尺度均匀性较好的焦斑。当在光路中加入二维光谱色散平滑单元后,光束在两个互相垂直的方向发生光谱色散,多光束干涉所引起的细密条纹也将在很大程度上被抹平,如果把横向热传导平滑效应也考虑在内,高空间频率的强度波动可进一步被消除。二维理论模拟结果表明采用该方案可获得顶部平坦边缘陡峭的焦斑,而且该方案无需仔细调整靶面的位置,实际应用较方便。
Resumo:
A lens array composed of edge-softened elements is used to improve on-target irradiation uniformity in the Shenguang II Laser Facility, with which a Fresnel pattern of suppressed diffraction peaks is obtained. Additional uniformity can be reached by reducing short-wavelength interference speckles inside the pattern when the technique of smoothing by spectral dispersion is also used. Two-dimensional performance of irradiation is simulated and the results indicate that a pattern of steeper edges and a flat top can be achieved with this joint technique. (c) 2007 Optical Society of America.
Resumo:
本文提出一种基于结构光照明和傅立叶分解方法的荧光层析成像技术,该技术首先将激发光的强度沿着光轴方向调制成余弦函数,然后用此激发光对样品作传统的二维扫描,在每一个扫描位置余弦函数的频率在一定的范围内扫描,同时一一对应地记录下所发出的荧光强度。只要对所纪录的荧光序列做一个简单的傅立叶变换,即可以得到此位置样品沿着光轴方向的荧光团分布。这样通过一个传统的二维扫描,就可以得到一个三维的阳样品分布。
Resumo:
Based on the interferential theory, we deduce a new type of analytic expression suitable for describing the evolutions of the optical bottle beam generated from the axicon-lens optical system illuminated by the Gaussian beam for the first time. The theory does not use much approximation in the process of mathematical analysis and can better illustrate the optical bottle beam evolutions at any positions. With the derived expression, the three-dimensional (3D) longitudinal and transverse intensity profiles of the optical bottle beam are simulated numerically. The numerical calculations have been confirmed by the experimental results.
Resumo:
Using the finite-difference-time-domain method, the near-field optical distribution and properties of Sb thin film thermal lens are calculated and simulated. The results show as follows. Within the near-field distance to the output plane of thermal lens, the spot size is approximately 100 nm, and its intensity is greatly enhanced, which is higher than that of incident light. The spot shape gradually changes from ellipse to round at the distance of more than 12 nm to the output plane. The above-simulated results are further demonstrated by the static optical recording experiment. (C) 2005 American Institute of Physics.
Resumo:
We quantitatively analysed the factors contributing to the optical transmission enhancement of a sub-wavelength Sb thin film lens, using the finite-difference time-domain (FDTD) method. The results show that the transmission enhancement of the dielectric with a Gaussian distributed refractive index loaded in a sub-wavelength circular hole is not only due to the high refractive index dielectric, but also due to the specific distributions of refractive index. It is the first study about the effects of the refractive index distribution on the transmission of a sub-wavelength aperture. This kind of lens has practical applications in the very small aperture lasers and for near-field optical storage and lithography.