87 resultados para EVOLUTION PROCESS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyzes landsliding process by nonlinear theories, especially the influence mechanism of external factors (such as rainfall and groundwater) on slope evolution. The author investigates landslide as a consequence of the catastrophic slide of initially stationary or creeping slope triggered by a small perturbation. A fully catastrophe analysis is done for all possible scenarios when a continuous change is imposed to the control parameters. As the slip surface continues and erosion due to rainfall occurs, control parameters of the slip surface may evolve such that a previously stable slope may become unstable (e.g. catastrophe occurs), when a small perturbation is imposed. Thus the present analysis offers a plausible explanation to why slope failure occurs at a particular rainfall, which is not the largest in the history of the slope. It is found, by analysis on the nonlinear dynamical model of the evolution process of slope built, that the relationship between the action of external environment factors and the response of the slope system is complicatedly nonlinear. When the nonlinear action of slope itself is equivalent to the acting ability of external environment, the chaotic phenomenon appears in the evolution process of slope, and its route leading to chaos is realized with bifurcation of period-doublings. On the basis of displacement time series of the slope, a nonlinear dynamic model is set up by improved Backus generalized linear inversion theory in this paper. Due to the equivalence between autonomous gradient system and catastrophe model, a standard cusp catastrophe model can be obtained through variable substitution. The method is applied to displacement data of Huangci landslide and Wolongsi landslide, to show how slopes evolve before landsliding. There is convincing statistical evidence to believe that the nonlinear dynamic model can make satisfied prediction results. Most important of all, we find that there is a sudden fall of D, which indicates the occurrence of catastrophe (when D=0).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rockfall is a geological evolution process involving detachment of blocks or boulders from a slope face, then their free falls, bouncing, rolling or sliding, and finally deposition near the toe of the slope. Many facts indicate that the rockfall can cause hazards to peoples, and it can be regarded as a geological hazard. A rockfall event may only involve a boulder or rock, and also several ones. When there are peoples, buildings, or other man-made establishments within the scope of rockfall trajectory, losses will be possibly induced in tenns of human lives or damages to these facilities. Researches into mechanism, kinematics, dynamics, hazard assessment, risk analysis, and mitigation measures of rockfalls are extremely necessary and important. Occurrence of rockfall is controlled by a lot of conditions, mainly including topographical, geomorphic, geological ones and triggering factors. The rockfall especially in mountainous areas, has different origins, and occurs to be frequent, unexpected, uncertain, in groups, periodic and sectional. The characterization and classification of the rockfalls not only increase knowledge about rockfall mechanism, but also can instruct mitigation of the hazards. In addition, stability of potential rockfalls have various sensitivity to different triggering factors and changes of geometrical conditions. Through theoretical analyses, laboratory experiments and field tests, the author presents some back-analysis methods for friction coefficients of sliding and rolling, and restitution coefficients. The used input data can be obtained economically and accurately in the field. Through deep studies on hazard assessment methods and analysis of factors influencing rockfall hazard, this paper presents a new assessment methodology consisting of preliminary assessment and detailed one. From the application in a 430 km long stretch of the Highway, which is located between Paksho and Nyingtri in Tibet, the methodology can be applicable for the rockfall hazard assessment in complex and difficult terrains. In addition, risk analyses along the stretch are conducted by computing the probability of encountering rockfalls and life losses resulting from rockfall impacts. Rockfall hazards may be mitigated by avoiding hazardous areas, clearness of dangerous rocks, reinforcement, obstructing the rockfalls, leading the rockfalls, warning and monitoring for rockfalls, etc. Seen from present remedial level of rockfall hazards, different mitigation measures, economical and effective buffering units, monitoring tecliniques and consciousness of environmental protection for rockfall mitigations should be further developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single-crystalline spinel (MgAl2O4) specimens were implanted with helium ions of 100 keV at three successively increasing fluences of (0.5, 2.0 and 8.0) x 10(16) ions/cm(2) at room temperature. The specimens were subsequently annealed in vacuum at different temperatures ranging from 500 to 1100 degrees C. Different techniques, including Fourier transformed infrared spectroscopy (FTIR), thermal desorption spectrometry (TDS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to investigate the specimens, It was found that the absorbance peak in the FTIR due to the stretching vibration of the Al-O bond shifts to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with an increase of annealing temperature. The absorbance peak shift has a linear relationship with the fluence increase in the as-implanted state, while it does not have a linear relationship with the fluence increase after the annealing process. Surface deformation occurred in the specimens implanted with fluences of 2.0 and 8.0 x 10(16) ions/cm(2) in the annealing process. The phenomena described above can be attributed to differences in defect formation in the specimens. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The final structure of molten syndiotactic polypropylene (sPP) sheared under different conditions was investigated by synchrotron small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (WAXD) techniques to elucidate the shear effects on sPP crystalline structure. The results obtained from the WAXD show that there is no variation on crystalline form but a little difference on the orientation of the 200 reflection. The SAXS data indicate that the lamellar thickness and long period have not been affected by shear but the lamellar orientation is dependent on shear. The experimental data of sPP crystallization from sheared melt may indicate a mesophase structure that is crucial to the shear effects on the final polymer multiscale crystalline structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of hydrodynamic interactions on the lamellar ordering process for two-dimensional quenched block copolymers in the presence of extended defects and the topological defect evolutions in lamellar ordering process are numerically investigated by means of a model based on lattice Boltzmann method and self-consistent field theory. By observing the evolution of the average size of domains, it is found that the domain growth is faster with stronger hydrodynamic effects. The morphological patterns formed also appear different. To study the defect evolution, a defect density is defined and is used to explore the defect evolutions in lamellar ordering process. Our simulation results show that the hydrodynamics effects can reduce the density of defects. With our model, the relations between the Flory-Huggins interaction parameter chi, the length of the polymer chains N, and the defect evolutions are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass (BMG) upon crystallization are investigated by the ultrasonic method, x-ray diffraction, density measurement, and differential scanning calorimetry. The elastic constants and Debye temperature of the BMG are obtained as a function of annealing temperature. Anomalous changes in ultrasonic velocities, elastic constants, and density are observed between 600–750 K, corresponding to the formation of metastable phases as an intermediate product in the crystallization process. The changes in acoustic velocities, elastic constants, density, and Debye temperature of the BMG relative to its fully crystallized state are much smaller, compared with those of other known BMGs, the differences being attributed to the microstructural feature of the BMG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on two-dimensional numerical simulation of cellular detonation wave in a / / mixture with low initial pressure using a detailed chemical reaction model and high order WENO scheme. Before the final equilibrium structure is produced, a fairly regular but still non-equilibrium mode is observed during the early stage of structure formation process. The numerically tracked detonation cells show that the cell size always adapts to the channel height such that the cell ratio is fairly independent of the grid sizes and initial and boundary conditions. During the structural evolution in a detonation cell, even as the simulated detonation wave characteristics suggest the presence of an ordinary detonation, the evolving instantaneous detonation state indicates a mainly underdriven state. As a considerable region of the gas mixture in a cell is observed to be ignited by the incident wave and transverse wave, it is further suggested that these two said waves play an essential role in the detonation propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition process of the thermocapillary convection from a steady and axisymmetric mode to the oscillatory mode in a liquid bridge with a fixed aspect ratio and varied volume ratio was studied experimentally. To ensure the surface tension to play an important role in the ground-based experiment, the geometrical configuration of the liquid bridge was so designed that the associated dynamic Bond number Bd ≈ 1. The velocity fields were measured by Particle Image Velocimetry (PIV) technique to effectively distinguish the different flow modes during the transition period in the experiments. Our experiments showed that as the temperature difference increased the slender and fat bridges presented quite different features on the evolution in their flow feature: for the former the thermocapillary convection transformed from a steady and axisymmetric pattern directly into an oscillatory one; but for the latter a transition flow status, characterized by an axial asymmetric steady convection, appeared before reaching the oscillatory mode. Experimental observations agree with the results of numerical simulations and it is obvious that the volume of liquid bridge is a sensitive geometric parameter. In addition, at the initial stage of the oscillation, for the former a rotating oscillatory convection with azimuthal wave number m = 1 was observed while for the latter a pulsating oscillatory pattern with azimuthal wave number m = 2 emerged, and then with further increase of the temperature difference, the pulsating oscillatory convection with azimuthal wave number m = 2 evolved into a rotating oscillatory pattern with azimuthal wave number m = 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To further investigate the mechanism of acoustic emission (AE) in the rock fracture experiment, moment tensor analysis was carried out. The AE sources characterized by crack sizes, orientations and fracture modes, are represented by a time-dependent momen

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of shear bands in saturated soils is a multi-stage process based on the theoretical and numerical investigations in this paper. The soil is initially in homogenous shear strain state, and the instability can be characterized by a dimensionless number D. The inhomogenous distribution of shear strains appears when D>1, and the shear band will initiate and develop gradually. Numerical solutions show that only single shear band that is finally formed in the central region of the specimen even several disturbances (distributed along the specimen) appear in the beginning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper performed a numerical simulation on temperature field evolution for the surface layer of a metallic alloy subjected to pulsed Nd:YAG laser treatment. The enthalpy method was adopted to solve the moving boundary problem, I.e. Stefan problem. Computational results were obtained to show the temperature field evolution. Effects of latent heat and mushy zone width on the temperature field were investigated. The results also show very high values of temperature gradient and cooling rate, which are typical characteristics during the solidification process.