476 resultados para EARTH IONS
Resumo:
An Ho3+-doped YAlO3 (Ho : YAP) single crystal has been grown by the Czochralski technique. The polarized absorption spectra, polarized fluorescence spectra and fluorescence decay curve of the crystal are measured at room temperature. The spectroscopic parameters are calculated based on Judd-Ofelt theory, and the effective phenomenological intensity parameters Omega(2,eff), Omega(4,eff) and Omega(6,eff) are obtained to be 2.89 x 10(-20), 2.92 x 10(-20) and 1.32 x 10(-20) cm(2), respectively. The room-temperature fluorescence lifetime of the Ho3+ 5I(7) -> I-5(8) transition is measured to be 8.1 ms. Values of the absorption and emission cross-sections with different polarizations are presented for the I-5(7) manifold, and the polarized gain cross-section curves are also provided and discussed.
Resumo:
A number of metal-based anticancer drugs are designed to target nucleic acids. Therefore, the elucidation of their interactions with nucleic acids is important for rational design of new anticancer agents with high selectivity and low toxicity, which has been received much attention in this field. Lanthanide complexes have the potential to be therapeutic agents due to their unique magnetic, optical, electronic, and coordinate characteristics. However, lanthanide ions are easy to hydrolysis under physiological pH, which makes it difficult to study rare earth complexes nucleic acids selectivity. Recent studies have shown that natural amino acids can form stable complexes with rare earth ions under near physiological condition and the complexes have high solubility. This review summarizes the current progress in rare earth-amino acid complexes binding to nuclelic acids and their selectivity.
Resumo:
CaWO4 phosphor films doped with rare-earth ions (Eu3+, Dy-,(3+) Sm3+, Er3+) were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, atomic force microscopy, and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting powders and films. The results of the XRD analysis indicated that the films began to crystallize at 400degreesC and that the crystallinity increased with elevation of the annealing temperature. The doped rare-earth ions showed their characteristic emissions in crystalline CaWO4 phosphor films due to energy transfer from WO42- groups to them. Both the lifetimes and PL intensities of the doped rare-earth ions increased with increasing annealing temperature, from 500 to 900degreesC, and the optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined as 30, 1.5, 1.5, 0.5 at.% of Ca2+ in CaWO4 films annealed at 900degreesC, respectively.
Resumo:
Several ultrathin luminescent Langmuir-Blodgett (LB) films have been prepared by using the subphase containing the rare earth ions (Eu3+, Tb3-). The effect of the rare earth ions on the monolayer of 2-n-heptadecanoylbenzoic acid (HBA) was investigated. IR and UV spectra showed the rare earth ions were bound to the carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction. UV absorbance intensity increases linearly with the number of LB films layers, which indicate that the LB films are homogeneously deposited. The LB films can give off strong fluorescence. and the signal can be detected from a single layer. The characteristic luminescence behaviors of LB films have been discussed compared with those of the complexes.
Resumo:
earth (Eu3+, Dy3+)-heteropolytungstate thin films were fabricated by self-assembly method successfully. The thin films give off strong fluorescence, which can be observed by eyes upon UV irradiation. The characteristic emission behaviors of the rare earth ions in self-assembled thin film were investigated compared with those of the corresponding solids. It is noticed that the intensity ratio between D-5(0) --> F-7(2) and D-5(0) --> F-7(1) of Eu3+ and the intensity ratio between F-4(9/2) --> H-6(13/2) and F-4(9/2) --> H-6(15/2) of Dy3+ in the self-assembled films are different from those of the corresponding solids. Furthermore, the self-assembled films present shorter fluorescence lifetimes than the corresponding solids. The reasons for these results have been discussed.
Resumo:
A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.
Resumo:
The optical properties of rare earth ions-activated barium orthophosphate phosphors, Ba-3(PO4)(2):RE (RE = Ce3+, Sm3+, Eu3+, Eu2+, and Tb3+), were investigated in vacuum ultraviolet (VLTV)-Vis range. A band-band transition Of PO43- in Ba-3(PO4)(2) is observed in the region of 150-170 nm. The partial reduction of Eu3+ to Eu2+ was observed and confirmed by luminescent spectra under the VUV-UV excitation. It is proposed that the electronegative defects that formed by aliovalent substitution of Eu3+ on the Ba2+ site in the host are responsible for the reduction process.
Resumo:
The rare earth (Eu3+, Dy3+)-polyoxometalate thin films were fabricated on quartz plate by the sol-gel method. The thin films were demonstrated by the luminescence spectra. The thin films exhibit the characteristic emission bands of the rare-earth ions. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ and the red to orange ratio (R:O) of Eu3+ in the films are different from that of the corresponding solids. Furthermore, the thin films present shorter fluorescence lifetime than the pure complexes. The reasons that were responsible for these results were also discussed.
Resumo:
This paper presents the results of the adsorption of heavy rare earth ions (Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 30 degreesC by the extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA), which has higher steric hindrance, higher selectivities and lower extraction and stripping acidity than di(2-ethylhexyl)phosphoric acid (DERPA) or 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH/EHP). The dependence of acid concentration, flow rate and amounts of rare earth ions sorbed on the separation of Er-Tm, Tm-Yb and Er-Tm-Yb mixtures has been studied. The baseline chromatographic separation of Er-Tm-Yb mixture has been observed. Satisfactory results with purity and yield of Tm2O3>99.71% and >71.25%, Er2O3>99-81% and >94.17%, and Yb2O3>99.74% and >89.83%, respectively, have been obtained. The parameters such,as resolution, separation factors and efficiencies have been determined as a function of acidity, loading of rare earth elements and flow rates. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
In LS coupling, the energy expressions of H-e(fd) of the chief low-energy levels of 4f(N-15)d (n < 9) configuration ions are calculated. H-e(fd) can be parameterized with F-K (k=2,4) and G(K)(k=1,3,5). f(k) and g(k), which are coefficients, times the corresponding parameter FK and GK leads to the energy expressions of H-e(fd).
Resumo:
In this presentation, nanocrystalline YVO4:A (A=Eu3+, Dy3+, SM3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography (micro-molding in capillaries). XRD, FT-IR, AFM and optical microscope, absorption spectra, photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degrees C and the crystallinity increased with the increase of annealing temperatures. Transparent nonpattemed phosphor films were uniform and crack free, which mainly consisted of grains with an average size of 90nm. Patterned crystalline phosphor film bands with different widths (5-30 mu m) were obtained. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films due to an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in YVO4 film host. The optimum concentration for Eu3+ was determined to be 7 mol% and those for Dy3+, Sm3+, Er3+ were 2 Mol% of Y3+ in YVO4 films, respectively.
Resumo:
Synthesis, IR spectra, UV-vis spectra and photophysical properties of Gd3+, Eu3+, Tb3+ complexes with 3,4-furandicarboxylic acid and 1,10-phenanthroline are reported. Intramolecular energy transfer process for these complexes is discussed in detail. It is found that the intramolecular energy transfer efficiency depends on the relative positions between the resonance energy levels of the central rare earth ions and the lowest triplet state energies of ligands.
Resumo:
The complexes of a series of rare earths with Ge-132 have been prepared. The carboxyl anions of Ge-132 molecule were coordinated to rare earth ion with chelate style. In the complexes molecule, the GeO3/2 group of Ge-132 were hydrolyzed to become -Ge(OH)(3) group, and later does:not coordinate with rare earth ions. All of the complexes possess similar properties. In aqueous solution of pH 6 and 50 degrees C, these complexes can obviously selectively catalytically hydrolize the phosphatide bond of 5'-AMP and 5'-dAMP into phosphatic acid and riboside.
Resumo:
The inorganic/polymer hybrid films with good luminescent properties have been obtained by the sol - gel process via incorporating the polymer component doped with rare earth complexes. These films exhibit good toughness and transparency. Their fluorescence spectra and lifetimes indicate that they all have the characteristic luminescence of the central rare earth ions. The lifetimes of these films are longer than those of pure complexes. TEM have showed that the rare earth complexes are dispersed homogeneously in SiO2/PVB interpenetratiny networks, and the dispersed size is between 20 and 30 nn.
Resumo:
Ternary complexes of europium and terbium with paraaminobenzoic acid and 1,10-phenanthroline (Eu(p-ABA)(3). phen . 2H(2)O and Tb(p-ABA)(3). phen . 2H(2)O, where p-HABA = paraaminobenzoic acid and phen = 1,10-phenanthroline) were introduced into a silica matrix by sol-gel method. The luminescence behavior of the complexes in silica gels was studied in comparison with the. corresponding solid-state complexes by means of emission, excitation spectra, and Lifetimes. Within the range of effective dopant concentrations, the luminescence intensities of rare-earth complexes in silica gel increase with the increasing of their dopant concentration. The lifetimes of rare-earth ions (Eu3+ and-Tb3+) in silica gel doped with europium and terbium complexes become longer than those in pure complexes. Very small amounts of rare-earth complexes doped in silica gel matrix can exhibit excellent luminescence properties, (C) 1998 Elsevier Science Ltd.