103 resultados para Durand Line
Resumo:
Rana grylio virus (RGV), a Ranavirus belonging to the family Iridoviridae, assembles in the viromatrix which is a factory for viral genome replication and particle assembly. Ultrastructural studies of the viromatrix will clarify the pathway of assembly. The viromatrix and quantitative changes in RGV infected epithelipma papulosum cyprini (EPC) cells, one of fish cell lines, were studied by electron microscopy. It was shown that viromatrices were adjacent to the nucleus, and the electron density was lower than that of the surrounding cytoplasm. The viromatrix contained virus particles with different forms, electron-dense materials and amorphous structures which included tubules and membranous materials. Tubules were often observed in direct continuity with empty capsids. Several bundles of intermediate filaments were seen alongside the viromatrix and crystalline aggregates. Large clusters of mitochondria occurred in proximity to viromatrix. A total of 990 cells profiles were examined. The results showed that 394 cells contained viromatrix: 89.3% contained one, and 10.7% contained two to four viromatrices. The number of viromatrices increased gradually and reached a peak at 16 h p.i. The viromatrix area at 24 h p.i. increased up to 7.4 +/- 0.69 mu m(2) which was three-times lower than that at 6 h p.i. The number of empty capsids within viromatrix was generally more than that of "full" particles at different time points, and there was a strong positive correlation between them. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pigment epithelium-derived factor (PEDF) is acknowledged to be a non-inhibitory member of the serine protease inhibitor (serpin) superfamily, with antiangiogenesis, and neuroprotective and immumoregulatory function, mainly in the tissues of nervous system. Here, A PEDF gene homolog, Paralichthys olivaceus PEDF (PoPEDF), was isolated from flounder embryonic cells (FEC) treated with UV-inactivated Grass carp hemorrhage virus (GCHV) and subsequently identified as a differentially expressed gene. The full length of PoPEDF cDNA is 1803 bp with an open reading frame of 1212 bp encoding a 403-amino-acid protein. This deduced protein contains an N-terminal signal peptide, a glycosylation site, a consensus serpin motif, and a 34-mer and a 44-mer fragment, all of which are very conserved in the PEDF family. PoPEDF gene exhibits a conserved exon-intron arrangement with 8 exons and 7 introns. This conserved evolutionary relationship was further confirmed by a phylogenetic analysis, where fish PEDFs and mammalian members formed a well-supported clade. Constitutive expression of PoPEDF was widely detected in many tissues. In response to UV-inactivated GCHV or poly(I:C), PEDF mRNA was upregulated in FEC cells with time. This is the first report on the transcriptional induction of PEDF in virally infected cells. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Spermatogonia are the male germ stem cells that continuously produce sperm for the next generation. Spermatogenesis is a complicated process that proceeds through mitotic phase of stem cell renewal and differentiation, meiotic phase, and postmeiotic phase of spermiogenesis. Full recapitulation of spermatogenesis in vitro has been impossible, as generation of normal spermatogonial stem cell lines without immortalization and production of motile sperm from these cells after long-term culture have not been achieved. Here we report the derivation of a normal spermatogonial cell line from a mature medakafish testis without immortalization. After 140 passages during 2 years of culture, this cell line retains stable but growth factor-dependent proliferation, a diploid karyotype, and the phenotype and gene expression pattern of spermatogonial stem cells. Furthermore, we show that this cell line can undergo meiosis and spermiogenesis to generate motile sperm. Therefore, the ability of continuous proliferation and sperm production in culture is an intrinsic property of medaka spermatogonial stem cells, and immortalization apparently is not necessary to derive male germ cell cultures. Our findings and cell line will offer a unique opportunity to study and recapitulate spermatogenesis in vitro and to develop approaches for germ-line transmission.
Resumo:
A rhabdovirus was observed from the diseased turbot (Scophthalmus maximus L.) with lethal syndrome. In this study, a carp leucocyte (CLC) cell line was used to investigate the infection process and cell death mechanism occurring during the virus infection. Strong cytopathogenic effect (CPE) and the morphological changes, such as extreme chromatin condensation, nucleus fragmentation, and apoptotic body formation, were observed under fluorescence microscopy after DAPI staining in the infected CLC cells. Transmission electron microscopy analysis showed cell shrinkage, plasma membrane blebbing, cytoplasm vacuolization, chromatin condensation, nuclear breakdown and formation of discrete apoptotic bodies. The bullet-shaped nucleocapsids were measured and ranged in size from 110 to 150 nm in length and 40 to 60 nm in diameter. And therefore the virus is called Scophthalmus maximus rhabdovirus (SMRV). Agarose gel electrophoresis analysis of the DNA extracted from infected cells showed typical DNA ladder in the course of SMRV infection. Flow cytometry analysis of SMRV infected CLC cells detected apoptotic peak in the virus infected CLC cells. Virus titre analysis and electron microscopic observation revealed that the virus replication fastigium was earlier than that of the apoptosis occurrence. No apoptosis was observed in the CLC infected with UV-inactivated SMRV. All these supported that SMRV infected CLC cells undergo apoptosis and the virus replication is necessary for apoptosis induction of CLC cells. (C) 2004 Published by Elsevier B.V.
Resumo:
A pathogenic virus (RGV), isolated from diseased pig frog Rana grylio with lethal syndrome, was investigated with regard to morphogenesis and cellular interactions in EPC cells, a cell Line from fish. Different stages of virus amplification, maturation and assembly were observed at nucleus, cytoplasm and cellular membranes. The matured virus particles, were not only distributed diffusely in nucleus, cytoplasm and cellular surface, but also aggregated as pseudocrystalline arrays in the cytoplasm. Virions were released by budding from the plasma membranes, or following cell lysis. Various types of cell damage, such as small vacuoles, spherical inclusions, and swollen and empty mitochondria, were also found. Some typical characteristics of RGV, such as the symmetrical shape of the virions, replication process involving both nuclear and cytoplasmic phases, budding release from cellular membrane and intracellular membrane, viromatrix and paracrystalline aggregation in cytoplasm, and its acute pathogenic effects, were observed to be similar to that of other iridoviruses. Therefore, the RGV appears to be a member of the Iridoviridae based on these studies. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Butt joint line-defect-waveguide microlasers are demonstrated on photonic crystal slabs with airholes in a triangular lattice. Such microlaser is designed to increase the output power from the waveguide edge directly. The output power is remarkably enhanced to 214 times higher by introducing chirped structure in the output waveguide. The lasing mode operates in the linear dispersion region of the output waveguide so that the absorption loss due to the band-edge effect is reduced. The laser resonance is illustrated theoretically using the finite difference time domain method. A practical high power efficiency of 20% is obtained in this microlaser. (C) 2008 American Institute of Physics.
Resumo:
We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.
Resumo:
A method for fabrication of long-wavelength narrow line-width InGaAs resonant cavity enhanced (RCE) photodetectors in a silicon substrate operating at the wavelength range of 1.3-1.6 mu m has been developed. A full width at half maximum (FWHM) of 0.7 nm and a peak responsivity of 0. 16 A/W at the resonance wavelength of 1.55 mu m have been accomplished by using a thick InP layer as part of the resonant cavity. The effects of roughness and tilt of the InP layer surface, and its free carrier absorption, as well as the thickness deviation of the mirror pair on the resonance wavelength shift and the peak quantum efficiency of the RCE photodetectors are analyzed in detail, and approaches for minimizing them toward superior performance are suggested. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The authors calculate the lifetime distribution functions of spontaneous emission from infinite line antennas embedded in two-dimensional disordered photonic crystals with finite size. The calculations indicate the coexistence of both accelerated and inhibited decay processes in disordered photonic crystals with finite size. The decay behavior of the spontaneous emission from infinite line antennas changes significantly by varying factors such as the line antennas' positions in the disordered photonic crystal, the shape of the crystal, the filling fraction, and the dielectric constant. Moreover, the authors analyze the effect of the degree of disorder on spontaneous emission. (c) 2007 American Institute of Physics.
Resumo:
A new method to measure reciprocal four-port structures, using a 16-term error model, is presented. The measurement is based on 5 two-port calibration standards connected to two of the ports, while the network analyzer is connected to the two remaining ports. Least-squares-fit data reduction techniques are used to lower error sensitivity. The effect of connectors is deembedded using closed-form equations. (C) 2007 Wiley Periodicals, Inc.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.
Resumo:
The performance of the current sensor in power equipment may become worse affected by the environment. In this paper, based on ICA, we propose a method for on-line verification of the phase difference of the current sensor. However, not all source components are mutually independent in our application. In order to get an exact result, we have proposed a relative likelihood index to choose an optimal result from different runs. The index is based on the maximum likelihood evaluation theory and the independent subspace analysis. The feasibility of our method has been confirmed by experimental results.
Resumo:
A one-to-two splitter for self-collimated beams in photonic crystal (PC) is designed by inserting one row of line defects. Finite-difference time-domain (FDTD) method is used to simulate the light propagation process. Our systematical studies show that the splitting ratio is a function of the airholes size of the line defect radius, and stays fairly constant as a function of frequency. Furthermore, it is shown the numerical results can be analyzed by coupled-mode theory. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.
Resumo:
The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.