51 resultados para Dry ice
Resumo:
Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq(3)/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.
Resumo:
In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.
Resumo:
Ca4Y6(SiO4)(6)O:A (A = Pb2+, Eu3+, Tb3+, Dy3+) phosphors have been prepared by two methods: the sol-gel method and the conventional dry method. The crystallization processes and the luminescence characteristics of the phosphors were studied, The sol-gel method features low-temperature formation of the phosphor, leading to successful preparation of Pb2+-activated phosphors which could not be prepared by the dry method at high temperature. The (4f)(8-)(4f)(7)(5d)(1) absorption band of Tb3+ and the charge-transfer (CT) band of Eu3+ have higher energies and narrower half-widths in the sol-gel-derived phosphors than in the phosphors prepared by the dry method, respectively. The Tb3+ and Dy3+ ions show stronger emission in the former than in the latter. Both the yellow-to-blue intensity ratio (Y:B) of Dy3+ and the red-to-orange intensity ratio (R:O) of Eu3+ in the sol-gel-derived phosphors are smaller than those for the phosphors derived by the dry method.
Resumo:
CARBON
Resumo:
The ice crystal formation is assumed as the most lethal factor for the failure of fish embryo cryopreservation and intracellular ice formation (IIF) plays a central role in cell injury during cooling. The objectives were to observe the morphological changes of red seabream (Pagrus major) embryo during the cooling-thawing process, and to examine the effect of cryoprotectant and cooling rate on the temperatures of oil globule ice formation (T-OIF), extra-cellular ice formation (T-EIF) and intracellular ice formation (T-IIF) using cryomicroscope. After thawing, the morphological changes of embryos were observed and recorded by the video attachment and monitor under the microscope. During the cooling process, three representative phenomena were observed: oil globule gradually turned bright firstly, then the whole field of view flashed and the embryo blackened. Cooling rate affect the temperature of both extra- and intra-cellular ice formations. T-EIF and T-IIF at high cooling rate were much lower than that at low cooling rate. And the value of T-EIF - T-IIF increased from 0.45 to 11.11 degrees C with the increase of cooling rate from 3 to 130 degrees C/min. Taken together, our results suggested that high cooling rate with proper cryoprotectant would be a good option for red seabream embryo cryopreservation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The taxonomic characterization of two strains of Antarctic ice algae, Chlamydomonas sp. ICE-L and Chlamydomonas sp. ICE-W, were analyzed on the basis of morphological and molecular traits. The results indicate that they are the same species and belong to Chlamydomonas (Chlorophyta). According to I SS rDNA and ITS-I sequences they are very close relatives of Chlamydomonas sp. Antarctic 2E9, if not identified as such. They belong to the 'monadina clade', Cd. monadina and Cm. subdivisa as the sister group, on the basis of 18S rDNA sequence. They occur in 'Chlamydomonas clade' according to rbcL sequencing and are close relatives of Cd. kuwadae. The ITS sequences of ICE-L and ICE-W are 1302 base pairs and 1300 base pairs in length, the longest Volvocales ITS sequences ever reported.
Resumo:
Eolian flux in the Chinese Loess Plateau was reconstructed by measuring the dry bulk density and CaCO3 content of the late Cenozoic loess-paleosol-red clay sequences in the Lingtai profile. Comparison of eolian flux variation between the Lingtai profile and the ODP sites 885/886 in the North Pacific shows a significant wet-dry variability in addition to a gradual drying trend in the dust source regions in interior Asia. Especially, the increase of eolian fluxes from both continental and pelagic eolian sediments indicates a sharp drying of the dust source regions between 3.6 and 2.6 MaBP, which might be attributed to the tectonic uplift of the Tibetan Plateau, which cut down the moisture input to the interior Asia. The average value and variability of eolian flux are higher after 2.6 MaBP than before, which may be related to the Quaternary climatic fluctuations on the glacial-interglacial timescale after the commencement of major Northern Hemisphere Glaciations. The eolian fluxes of the Lingtai profile and Core V21-146 in northwest Pacific show a synchronous variation on the 10(4)-10(5) a timescale, indicating that the flux variations from both continental and marine records are closely correlated to the Quaternary climatic fluctuation forced by the ice volume changes on a global scale.
Resumo:
Hydrogen permeation behaviours of high strength steel 35CrMo under different cyclic wet-dry conditions have been investigated by using Devanathan-Stachurski's technique. Four electrolytes were used: distilled water, seawater, seawater containing 1500 ppm H2S and seawater containing 0.03 mol L-1 SO2. The corrosion weight loss of 35CrMo in the wet-dry cycles was measured simultaneously. The experimental results show that hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles and the permeation current density during a wet-dry cycle showed a maximum during the drying process. The hydrogen permeation was obviously promoted by Cl- ions, H2S and SO2. The hydrogen permeation in the real marine atmosphere has also been investigated. There is a clear correlation between the amount of hydrogen permeated and the corrosion weight losses. Results show the importance of hydrogen permeation that merits further investigation.
Resumo:
Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.
Resumo:
We used an eddy covariance technique to measure evapotranspiration and carbon flux over two very different growing seasons for a typical steppe on the Inner Mongolia Plateau, China. The rainfall during the 2004 growing season (344.7 mm) was close to the annual average (350.43 mm). In contrast, precipitation during the 2005 growing season was significantly lower than average (only 126 mm). The wet 2004 growing season had a higher peak evapotranspiration (4 mm day(-1)) than did the dry 2005 growing season (3.3 mm day(-1)). In 2004, latent heat flux was mainly a consumption resource for net radiation, accounting for similar to 46% of net radiation. However, sensible heat flux dominated the energy budget over the whole growing season in 2005, accounting for 60% of net radiation. The evaporative rate (LE/R-n) dropped by a factor of four from the non-soil stress to soil water limiting conditions. Maximum half-hourly CO2 uptake was -0.68 mg m(-2) s(-1) and maximum ecosystem exchange was 4.3 g CO2 m(-2) day(-1) in 2004. The 2005 drought growing stage had a maximum CO2 exchange value of only -0.22 mg m(-2) s(-1) and a continuous positive integrated-daily CO2 flux over the entire growing season, i.e. the ecosystem became a net carbon source. Soil respiration was temperature dependent when the soil was under non-limiting soil moisture conditions, but this response declined with soil water stress. Water availability and a high vapor pressure deficit severely limited carbon fixing of this ecosystem; thus, during the growing season, the capacity to fix CO2 was closely related to both timing and frequency of rainfall events. (c) 2007 Published by Elsevier Masson SAS.
Resumo:
Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A feeding trial A as conducted at the farm of Qinghai Academy of Animal and Veterinary Science, Xining, China during 1996 - 1997 with three dry yak cows (initial body weight 163 - 197 kg, age 5 - 6 years) by using 3 x 3 Latin Square Design to determine the effect of levels of feed intake on digestion, nitrogen balance and purine derivative excretion in urine of yak cows. The animals were fed oat hay (nitrogen 13.5 g/kg dry matter (DM), metabolisable energy 8.3 MJ/kg DM), i.e., 0.3, 0.6 and 0.9 of voluntary intake (VI). Each intake treatment lasted for 17 days and the samples (feeds, faeces and urine) were collected during last 7 days of each period. The results indicate that digestibility of dietary DM, OM, NDF and ash declined when intake levels increased from 0.3 to 0.9 VI [DM, from 66.1% to 59.1% (P < 0.05); OM, from 68.1% to 59.9% (P < 0.05); NDF, from 62.1% to 54.3% (P < 0.05); and ash, from 33.9% to 11.8% (P < 0.05)]. Around 0.10 g N/kg W-0.75 was deficient daily in yak cows at 0.3 VI, and positive N balances were observed at 0.6 and 0.9 VI. Intake levels significantly (P < 0.05) affected total PD excretion in yak urine. The proportion of allantoin increased (P < 0.05) and uric acid decreased (P < 0.05) as intake level of feed increased. (C) 2004 Elsevier B.V. All rights reserved.