35 resultados para Discrete time system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, based on Einstein relationship between diffusion and random walk, the electrochemical behavior of a system with a limited number of molecules was simulated and explored theoretically. The transition of the current vs time responses from discrete to continuous was clearly obtained as the number of redox molecules increased from 10 to 10(6).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a sphere electrode enclosed in finite-volume electrolyte, the measured current will deviate from the result predicted by the semi-infinite diffusion theory after some time. By random-walk simulation, we compared this time to the one needed for diffusion layer to reach electrolyte boundary, and revealed a clear signal delay of electrochemical current. Further we presented a quantitative description of this delay time. The simulation results suggested that the semi-infinite diffusion theory can even be applied when the theoretical diffusion layer grows to 1.28 electrolyte thicknesses, with an accuracy better than 0.5%. We attributed this time delay to the molecules' finite propagation velocity. Finally, we discussed how this delay can influence and facilitate the following electrochemical detection towards the nanometer and single-cell scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heart disease is one of the main factor causing death in the developed countries. Over several decades, variety of electronic and computer technology have been developed to assist clinical practices for cardiac performance monitoring and heart disease diagnosis. Among these methods, Ballistocardiography (BCG) has an interesting feature that no electrodes are needed to be attached to the body during the measurement. Thus, it is provides a potential application to asses the patients heart condition in the home. In this paper, a comparison is made for two neural networks based BCG signal classification models. One system uses a principal component analysis (PCA) method, and the other a discrete wavelet transform, to reduce the input dimensionality. It is indicated that the combined wavelet transform and neural network has a more reliable performance than the combined PCA and neural network system. Moreover, the wavelet transform requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new continuous configuration time-dependent self-consistent field method has been developed to study polyatomic dynamical problems by using the discrete variable representation for the reaction system, and applied to a reaction system coupled to a bath. The method is very efficient because the equations involved are as simple as those in the traditional single configuration approach, and can account for the correlations between the reaction system and bath modes rather well. (C) American Institute of Physics.