33 resultados para Data transfer
Resumo:
The title supramolecular compound, [HMDH2][(H2PMoMo11O40)-Mo-V] . 2AA . 3H(2)O . DMF (HMD = hexamethylene diamine; AA=acetaldehyde; DMF=N,N-dimethyl formamide), has been photochemically synthesized by using elemental analysis, IR, solid diffusion reflectance, electronic spectra, ESR spectra and X-ray single-crystal analysis. The crystallographic data: triclinic, P (1) over bar, a=14.092(2), b=14.347(3), c=14.358(3)Angstrom, alpha = 75.10(3), beta = 80.70(3), gamma = 80.73(3)degrees, V = 2746.6(10)Angstrom (3), Z = 2, M-r = 2081.68, D-c=2.517g/cm(3), F(000) =1970, mu (MoK alpha) =2.766mm(-1). The structure has been refined to R =0.0832 and wR=0.2638, by full-matrix least-squares method. The title compound is composed of hexamethylene diamine, two acetaldehyde molecules, three water molecules, one N,N-dimethylformamide and [(H2PMoMo11O40)-Mo-V](2-) heteropoly anion.
Resumo:
Propylamine has been selected to investigate the isotope effect of a fast deuteron transfer reaction by ultrasonic relaxation method. Ultrasonic absorption coefficients of propylamine in heavy water (D2O) at 25 degrees C in the concentration range from 0.0107 to 0.6300 mol dm(-3) have been measured by pulse and resonance methods over the frequency range from 0.8 to 220 MHz. A Debye-type single relaxation absorption has been observed in the solution. From the dependence of the ultrasonic relaxation parameters on the concentration and solution pH, the source of the observed relaxation has been attributed to a perturbation of the chemical equilibrium associated with the deuteron transfer reaction. The rate and equilibrium constants have been determined by the measurement of the deuteroxyl ion concentration dependence of the relaxation frequency. Also the standard volume change of the reaction has been determined from the concentration dependence of the maximum absorption per wavelength and the adiabatic compressibility has been calculated from the density and the sound velocity in the solution. These results have then been compared with those obtained for propylamine in light water (H2O). The forward rate constant is greater and the reverse rate constant is smaller in DO than in H2O. The standard volume change for deuteron transfer is greater than that for proton transfer reaction, and the adiabatic compressibility shows a similar trend. These data support an argument that there exists a stronger hydrogen bond in D2O than in H2O. The difference of the stability in the intermediate states, R-ND3+... OD- and R-NH3+... OH-, has also been considered from the results of the isotope effects.
Resumo:
The transfer behavior of alkali motal ions K~+ and Na~+ across the interfaces of water/nitrobenzene and water/1, 2-dichloroethane facilitated by Triton X-100 is investigated by cyclic voltammetry with four electrodes. The equations of interfacial half-wave potential derived in terms of the mechanism proposed isverified by the experimental data and consistent with the practical △_0~wφ_p-pM curves.