32 resultados para Coupled Climate Model
Resumo:
The basic features of climatology and interannual variations of tropical Pacific and Indian Oceans were analyzed using a coupled general circulation model (CGCM), which was constituted with an intermediate 2.5-layer ocean model and atmosphere model ECHAM4. The CGCM well captures the spatial and temporal structure of the Pacific El Nino-Southern Oscillation (ENSO) and the variability features in the tropical Indian Ocean. The influence of Pacific air-sea coupled process on the Indian Ocean variability was investigated carefully by conducting numerical experiments. Results show that the occurrence frequency of positive/negative Indian Ocean Dipole (IOD) event will decrease/increase with the presence/absence of the coupled process in the Pacific Ocean. Further analysis demonstrated that the air-sea coupled process in the Pacific Ocean affects the IOD variability mainly by influencing the zonal gradient of thermocline via modulating the background sea surface wind.
Resumo:
A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M-2 tide, time - varying wind forcing and river discharge. Wind records from I to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M, tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.