96 resultados para Continuum hydrodynamics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A correlative reference model for computer molecular dynamics simulations is proposed. Based on this model, a flexible displacement boundary scheme is introduced and the dislocations emitted from a crack tip can continuously pass through the border of the inner discrete atomic region and pile up at the outer continuum region. The effect of the emitted dislocations within the plastic zone on the inner atomistic region can be clearly demonstrated. The simulations for a molybdinum crystal show that a full dislocation in a bcc crystal is dissociated into three partial dislocations and interaction between the crack and the emitted dislocations results in gradual decrease of the local stress intensity factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream. 在双连续介质理论框架下,采用匹配渐进展开方法导出并求解了具有蒸发液滴的汽雾流中层流边界层方程,给出了控制汽雾流的相似判据。对于沿曲面的流动,边界层方程的形式取决于是否存在液滴的惯性沉积。给出了热钝体验点附近蒸汽。液滴边界层的数值计算结果。它们表明:由于蒸发,在边界层内近壁处形成了一个无液滴区域;在该区上边界处,液滴半径趋于零而液滴数密度急剧增高。液滴蒸发及聚集的联合效应造成了表面热流的显著增加,甚至在自由来流中液滴质量浓度很低时此效应依然存在。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of nanotechnology has necessitated a better understanding of how material microstructure changes at the atomic level would affect the macroscopic properties that control the performance. Such a challenge has uncovered many phenomena that were not previously understood and taken for granted. Among them are the basic foundation of dislocation theories which are now known to be inadequate. Simplifying assumptions invoked at the macroscale may not be applicable at the micro- and/or nanoscale. There are implications of scaling hierrachy associated with in-homegeneity and nonequilibrium. of physical systems. What is taken to be homogeneous and equilibrium at the macroscale may not be so when the physical size of the material is reduced to microns. These fundamental issues cannot be dispensed at will for the sake of convenience because they could alter the outcome of predictions. Even more unsatisfying is the lack of consistency in modeling physical systems. This could translate to the inability for identifying the relevant manufacturing parameters and rendering the end product unpractical because of high cost. Advanced composite and ceramic materials are cases in point. Discussed are potential pitfalls for applying models at both the atomic and continuum levels. No encouragement is made to unravel the truth of nature. Let it be partiuclates, a smooth continuum or a combination of both. The present trend of development in scaling tends to seek for different characteristic lengths of material microstructures with or without the influence of time effects. Much will be learned from atomistic simulation models to show how results could differ as boundary conditions and scales are changed. Quantum mechanics, continuum and cosmological models provide evidence that no general approach is in sight. Of immediate interest is perhaps the establishment of greater precision in terminology so as to better communicate results involving multiscale physical events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the strain gradient theory proposed by Chen and Wang (2001 a, 2002b) is used to analyze an interface crack tip field at micron scales. Numerical results show that at a distance much larger than the dislocation spacing the classical continuum plasticity is applicable; but the stress level with the strain gradient effect is significantly higher than that in classical plasticity immediately ahead of the crack tip. The singularity of stresses in the strain gradient theory is higher than that in HRR field and it slightly exceeds or equals to the square root singularity and has no relation with the material hardening exponents. Several kinds of interface crack fields are calculated and compared. The interface crack tip field between an elastic-plastic material and a rigid substrate is different from that between two elastic-plastic solids. This study provides explanations for the crack growth in materials by decohesion at the atomic scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A correlative reference model for a computer simulation of molecular dynamics is proposed in this paper. Based on this model, a flexible displacement boundary scheme is naturally introduced and the dislocations emitted from a crack tip are presumed to continuously pass through the border of an inner discrete atomic region to pile up at an outer continuum region. The simulations for a Mo crystal show that the interaction between a crack and emitted dislocations results in the decrease in local stress intensity factor gradually.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of experiments of instability of a uniform cylindrical soap film, Boys had showed that the bubble molded by the film is unstable when its length is greater than its circumference. Recently that is generally called the Rayleigh Criterion. In this paper, a linear theory in hydrodynamics is applied to analyze the stability of the cylindrical soap film supported by two equal size disks; all conditions of the stationary wave on the end plates of two disks are given. From here we get that the Rayleigh Criterion on the stability of the cylindrical soap film is proved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiscale technique that combines an atomistic description of the interfacial (near) region with a coarse-grained (continuum) description of the far regions of the solid substrates is proposed. The new hybrid technique, which represents an advance over a previously proposed dynamically-constrained hybrid atomistic-coarse-grained treatment (Wu et al.J. Chem. Phys., 120, 6744, 2004), is applied to a two-dimensional model tribological system comprising planar substrates sandwiching a monolayer film. Shear–stress profiles (shear stress versus strain) computed by the new hybrid technique are in excellent agreement with “exact” profiles (i.e. those computed treating the whole system at the atomic scale).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

地质体材料的破坏演化过程是地质灾害防治工程中亟待解决的关键科学问题,也是力学的前沿课题。基于连续模型的离散元方法是研究该问题的一种数值方法。用求矩阵特征值的方法,推导基于连续介质模型的离散元方法中三维有限元刚度矩阵转化为离散元弹簧刚度的解析表达式,给出了不同条件下离散元弹簧的取法。研究立方体八节点单元中离散元弹簧的性质,得到棱弹簧、面对角线弹簧以及体对角线弹簧的刚度和方向表达式,给出这些弹簧刚度以及方向与泊松比的关系图。最后,将基于连续介质模型的离散元方法模型与Gusev模型、二维链网模型进行比较。对于泊松比为0.25时的平面应变问题,对于泊松比为1/3时的平面应力问题,基于连续介质模型的离散元方法模型与二维链网模型一致。在块体内部,基于连续介质模型的离散元方法模型与Gusev模型一致。且基于连续介质模型的离散元方法模型能模拟链网模型和Gusev模型都不能模拟边界单元,证明基于连续介质模型的离散元方法模型更具普遍性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two principal problems of equivalency and locality in nano-scale measurement are considered in this paper. The conventional measurements of force and displacement are always closely related to the equivalency problem between the measuremental results by experimental system and the real physical status of the sample, and the locality of the mechanical quantities to be measured. There are some noticeable contradictions in nano-scale measurements induced by the two problems. In this paper, by utilizing a coupled molecular-continuum method, we illustrate the important effects of the two principal problems in atomic force microscopy (AFM) measurements on nano-scale. Our calculations and analysis of these typical mechanical measurement problems suggest that in nano-meter scale measurements, the two principal problems must be carefully dealt with. The coupled molecular-continuum method used in this paper is very effective in solving these problems on nano-scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.