170 resultados para Conservation equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by use of the boundary integral equation method and the techniques of Green basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is also investigated. By use of the high precision numerical method for the singular integral equation and Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that the method of this paper is successful and can be used to solve more complicated problems. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We try to connect the theory of infinite dimensional dynamical systems and nonlinear dynamical methods. The sine-Gordon equation is used to illustrate our method of discussing the dynamical behaviour of infinite dimensional systems. The results agree with those of Bishop and Flesch [SLAM J. Math. Anal. 21 (1990) 1511].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics, 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the idea proposed by Hu [Scientia Sinica Series A XXX, 385-390 (1987)], a new type of boundary integral equation for plane problems of elasticity including rotational forces is derived and its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to demonstrate the accuracy of the new type of boundary integral equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dilatational plastic constitutive equation presented in this paper is proved to be in a form of generality. Based on this equation, the constitutive behaviour of materials at the moment of bifurcation is demonstrated to follow a loading path with the response as "soft" as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of suspension flows, the rate of interphase momentum transfer M(k) and that of interphase energy transfer E(k), which were expressed as a sum of infinite discontinuities by Ishii, have been reduced to the sum of several terms which have concise physical significance. M(k) is composed of the following terms: (i) the momentum carried by the interphase mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii) the interphase force produced by the concentration gradient of the dispersed phase in a pressure field. And E(k) is composed of the following four terms, that is, the energy carried by the interphase mass transfer, the work produced by the interphase forces of the second and third parts above, and the heat transfer between phases. It is concluded from the results that (i) the term, (-alpha-k-nabla-p), which is related to the pressure gradient in the momentum equation, can be derived from the basic conservation laws without introducing the "shared-pressure presumption"; (ii) the mean velocity of the action point of the interphase drag is the mean velocity of the interface displacement, upsilonBAR-i. It is approximately equal to the mean velocity of the dispersed phase, upsilonBAR-d. Hence the work terms produced by the drag forces are f(dc) . upsilonBAR-d, and f(cd) . upsilonBAR-d, respectively, with upsilonBAR-i not being replaced by the mean velocity of the continuous phase, upsilonBAR-c; (iii) by analogy, the terms of the momentum transfer due to phase change are upsilonBAR-d-GAMMA-c, and upsilonBAR-d-GAMMA-d, respectively; (iv) since the transformation between explicit heat and latent heat occurs in the process of phase change, the algebraic sum of the heat transfer between phases is not equal to zero. Q(ic) and Q(id) are composed of the explicit heat and latent heat, so that the sum Q(ic) + Q(id)) is equal to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of a brief review of the continuum theory for macroscopic descriptions and the kinetic theory for microscopic descriptions in solid/liquid two-phase flows, some suggestions are presented, i.e. the solid phase may be described by the Boltzmann equation and the liquid phase still be described by conservation laws in the continuum theory. Among them the action force on the particles by the liquid fluid is a coupling factor which connects the phases. For dilute steady solid/liquid two-phase flows, the particle velocity distribution function can be derived by analogy with the procedures in the kinetic theory of gas molecules for the equilibrium state instead of being assumed, as previous investigators did. This done, more detailed information, such as the velocity probability density distribution, mean velocity distribution and fluctuating intensity etc. can be obtained directly from the particle velocity distribution function or from its integration. Experiments have been performed for dilute solid/liquid two-phase flow in a 4 x 6 cm2 sized circulating square pipe system by means of laser Doppler anemometry so that the theories can be examined. The comparisons show that the theories agree very well with all the measured data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stationary two-dimensional (x, z) near wakes behind a flat-based projectile which moves at a constant mesothermal speed (V∞) along a z-axis in a rarefied, fully ionized, plasma is studied using the wave model previously proposed by one of the authors (VCL). One-fluid theory is used to depict the free expansion of ambient plasma into the vacuum produced behind a fast-moving projectile. This nonstationary, one-dimensional (x, t) flow which is approximated by the K-dV equation can be transformed, through substitution, t=z/V∞, into a stationary two-dimensional (x, z) near wake flow seen by an observer moving with the body velocity (V∞). The initial value problem of the K-dV equation in (x, t) variables is solved by a specially devised numerical method. Comparisons of the present numerical solution for the asymptotically small and large times with available analytical solutions are made and found in satisfactory agreements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The starting process of two-dimensional nozzle flows has been simulated with Euler, laminar and k - g two-equation turbulence Navier-Stokes equations. The flow solver is based on a combination of LUSGS subiteration implicit method and five spatial discretized schemes, which are Roe, HLLE, MHLLE upwind schemes and AUSM+, AUSMPW schemes. In the paper, special attention is for the flow differences of the nozzle starting process obtained from different governing equations and different schemes. Two nozzle flows, previously investigated experimentally and numerically by other researchers, are chosen as our examples. The calculated results indicate the carbuncle phenomenon and unphysical oscillations appear more or less near a wall or behind strong shock wave except using HLLE scheme, and these unphysical phenomena become more seriously with the increase of Mach number. Comparing the turbulence calculation, inviscid solution cannot simulate the wall flow separation and the laminar solution shows some different flow characteristics in the regions of flow separation and near wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<equations computations for high Reynolds number flows, an idea of solving the conservation equations for discrete cells was proposed and named the discrete fluid dynamics (DFD) algorithm. Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the penetration process of ogive-nose projectiles into the semi-infinite concrete target is investigated by the dimensional analysis method and FEM simulation. With the dimensional analysis, main non-dimensional parameters which control the penetration depth are obtained with some reasonable hypothesis. Then, a new semi-empirical equation is present based on the original work of Forrestal et al., has only two non-dimensional combined variables with definite physical meanings. To verify this equation, prediction results are compared with experiments in a wide variation region of velocity. Then, a commercial FEM code, LS-DYNA, is used to simulate the complex penetration process, that also show the novel semi-empirical equation is reasonable for determining the penetration depth in a concrete target.