40 resultados para Conon, fl. 36 B.C.-17 A.D.
Resumo:
合成了八-4-(正壬氧基)酞菁铽(Ⅲ)(A)、八-4-(四氢糠氧基)酞菁(Ⅲ)(B)、双酞菁铽(Ⅲ)(C)、八-4-硝基酞菁铽(Ⅲ)(D),并通过元素分析、红外光谱、质谱和紫外.可见光谱加以确认。配合物B的π-A曲线表明它有很好的成膜性,Y型沉积形成的LB膜材料有很强的荧光响应,随着LB膜厚度的增加,荧光性增强掺杂邻菲咯啉形成的混合LB膜,其荧光性比纯膜强。n(配合物B):n(邻菲咯啉)=1:10时有最好的荧光行为.
Resumo:
Poly-ortho-methylanilines (POT) in three states fully oxidized, fully reduced and oxidized in varying degrees were synthesized by the reaction of common POT (C-POT) having nearly equal amounts of benzenediamine and quinonediimine units with iodine or phenyl-hydrazine, and the resulting polymers were characterized by IR, C-13-NMR, SEM and elemental analysis. The results showed that the quinonediimine unit in C-POT could be reduced by phenylhydrazine to the benzenediamine unit, forming the polymer with low OD (oxidation degree) or in a fully reduced state and that iodine-oxidation resulted in the increase of quinonediimine unit and decrease of benzenediamine unit. The solubility and flexibility of the formed polymers depend strongly on the amount of quinonediimine unit in it. It is necessary to reduce the content of quinonediimine structure unit in order to improve the solubility of aniline-class polymers.
Resumo:
The reaction of LnCl3.2LiCl with 1 equiv of MeCpNa in THF gives the complexes [(THF)2Li(mu-Cl)2]2[MeCpLn(THF)] (Ln = Nd (1), La (2)) in good yield. These precursors react further with 2 equiv of LiNPh2 to produce the new complexes [Li(DME)3][MeCpLn(NPh2)3] (Ln = La (3), Pr (4), Nd (5)). They have been characterized by elemental analyses and IR and NMR spectra, as well as by structural analyses of 1 and 3. The chloride 1 crystallizes in the monoclinic space group P2(1)/n (No. 14) with a = 12.130 (5) angstrom, b = 17.343 (5) angstrom, c = 17.016 (5) angstrom, beta = 108.54 (3)-degrees, V = 3393.87 angstrom3, Z = 4, and D(c) = 1.45 g/cm3. Least-squares refinement led to a final R value of 0.051 (I greater-than-or-equal-to 3-sigma(I(o))) for 2004 independent reflections. Complex 3 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 18.335 (6) angstrom, b = 16.576 (5) angstrom, c = 17.461 (6) angstrom, beta = 96.04 (3)-degrees, V = 5277.17 angstrom3, D(c) = 1.26 g/cm3, Z = 4, and R = 0.057 (I greater-than-or-equal-to 2.5-sigma(I(o))) for 3378 reflections. The structure of 3 consists of discrete ion pairs [Li(DME)3]+ and [MeCpLa(NPh2)3]- with average La-N and La-C(ring) distances of 2.459 (8) and 2.84 (1) angstrom, respectively.
Resumo:
The reaction of GdCl3 with 1 equiv of NaC5Me5 generates a neutral complex C5Me5GdCl2(THF)3 and a novel complex {Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-2-Cl)3(mu-3-Cl)2}2.6THF whixh recrystallizes from THF in triclinic, the space group P1BAR with unit cell dimentions of a 12.183(4), b 13.638(6), c 17.883(7) angstrom, alpha-110.38(3), beta-94.04(3), gamma-99.44(3)-degrees, V 2721.20 angstrom-3 and D(calc) 1.43 g cm-3 for Z = 1. Least-squares refinement of 2170 observed reflections led to a final R value of 0.047. The title complex consists of two Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-3-Cl)3(mu-3-Cl)2 units bridged together via two mu-2-THF to Na coordination. Each Gd ion is surrounded by one C5Me5 ligand, two mu-3-Cl, two mu-2-Cl and one THF in a distorted octahedral arrangement with average Gd-C(ring) 2.686(33), Gd-mu-2-Cl 2.724(7), Gd-mu-3-Cl 2.832(8) and Gd-O 2.407(11) angstrom. The sodium ion coordinates to two bridging THF, two mu-2-Cl and two mu-3-Cl to form a distorted octahedron with average Na-mu-2-O, Na-mu-2-Cl and Na-mu-3-Cl of 2.411(21), 2.807(15) and 2.845(12) angstrom, respectively.
Resumo:
滤食性贝类以水体中的浮游植物和有机碎屑为主要食物,养殖海域的初级生产力水平、水动力学特性等生态环境因子的差异,不仅直接影响养殖贝类的产量,而且也与贝类养殖活动对生态环境的压力密切相关。由于养殖的种类、密度、方式及养殖海域的特性不同,关于贝类对生态环境的影响往往有不同的结果。本文以我国北方大连獐子岛扇贝底播海区和荣成桑沟湾贝类筏式养殖区为研究对象,采用现场调查、室内受控实验及生态数值模型模拟方法,分析研究了滤食性贝类对海域生态系统的影响,对这两个海域贝类养殖的生态容量进行了初步的评价。 主要结果: 1. 獐子岛海域底播贝类养殖活动对该海域生态系统的影响较小。非参数统计—符号检验的结果显示,养殖区与非养殖区之间的溶解性无机氮、磷酸盐浓度、氮磷摩尔比及浮游植物群落结构没有统计学上的差异(p>0.05)。但是从变化的趋势上来看,贝类养殖活动对水域环境的某些参数有一定程度的影响。例如,獐子岛底播贝类养殖海域的溶解性无机氮以氨氮为主,可能与贝类的代泄活动有关;不论是叶绿素浓度,还是网采浮游植物的生物量都是贝类高密度养殖区<贝类低密度养殖区<非养殖区(7月份除外),这种趋势可能与贝类的摄食压力有关。 桑沟湾各环境指标表现出明显的区域性。除春季外,非养殖区的DIN浓度高于各养殖区。在春季和冬季,贝类区的磷酸盐浓度显著降低;而硅酸盐浓度在夏季和秋季显著增大。综合分析DIN、PO4-P及SiO3-Si三个参数的四季变化,海带区、贝藻区及贝类区发生显著性变异的概率分别为25%,42%和50%,贝类区的变异较大。浮游植物、小型浮游动物的生物多样性指数都是以非养殖区为最高,贝类区的多样性指数最低。尤其是浮游动物的丰度,贝类区显著低于非养殖区。 2. 利用挪威的MOM (Modelling-Ongrowing fish farms-Monitoring)评价系统,评价了桑沟湾长期大规模的贝藻筏式养殖活动对底质环境的压力。在桑沟湾设10个取样站位,共获得66个底泥样品。比较了MOM-B评价系统的3组参数的季节变化特性。结果显示,底质条件属于1级,说明桑沟湾贝藻长期大规模的养殖活动对底质环境的压力较低。结合桑沟湾的环境及养殖特点,分析了压力较低的原因。 3. 经计算,2006年中国海水养殖的贝类和藻类使用浅海生态系统的碳可达396万吨,并通过收获从海中移出至少136.9万吨的碳。从1995年至2006年,养殖大型藻类和贝类累计移出的碳分别约为365万吨和893万吨,总计达1258万吨。证明了浅海的贝类和藻类养殖活动直接或间接地使用了大量的海洋碳,提高了浅海生态系统吸收大气CO2的能力。 4. 采用模拟现场生物沉积法测定了虾夷扇贝的滤水率、摄食率等生理指标及其与贝类个体大小、水温的关系。虾夷扇贝单位个体的滤水率与组织干重的关系符合幂函数方程CR=a×DWb,b值在0.45~0.65范围内;水温对虾夷扇贝滤水率的影响极其显著(p<0.01),温度(T)与滤水率(CR)呈抛物线的关系:CR=-0.0009T2+0.0188T-0.0306,水温为10℃时,虾夷扇贝的滤水率、摄食较大。 5. 采用模拟现场流水法测定了3种滤食性贝类的食物选择性。紫贻贝、长牡蛎及栉孔扇贝分别对直径4m, 6m 和 8m颗粒的保留效率达到最大值;对小颗粒(直径2m)的保留效率分别为17%, 19% 和 8%。栉孔扇贝对食物数量和质量浓度的变化相对敏感,随着数量浓度的增加,栉孔扇贝倾向于摄食较大的颗粒;随着颗粒食物质量浓度的增加,倾向于摄食较小的颗粒。 6. 獐子岛海域四个航次的调查结果显示,叶绿素浓度在1.23~2.85mg.m-3范围内,均值为1.78±0.57 mg.m-3;初级生产力的变化范围为30.4~117.0 mg C. m-2.d-1,平均值为76.6±41.9 mg C. m-2.d-1。通过虾夷扇贝生物量断面调查,获得了虾夷扇贝的壳高频率分布情况,7月份的众数值出现在100 mm,10月份壳高的众数值为80 mm。利用以上测定的虾夷扇贝的滤水率等基本生物学特性,结合虾夷扇贝的年产量、海域面积和有关的水文状况等数据,计算了滤水效率、摄食压力、调节比率3个食物限制性指标参数,全年的均值分别为0.048, 0.31和 0.16,都小于1,说明目前该海域虾夷扇贝的养殖量未达到养殖容量。 7. 利用STELLA软件,建立的桑沟湾贝藻养殖的数值模型,模拟了叶绿素a浓度及氮磷营养盐的周年变化情况,及其对贝类养殖生物量变化的响应。以叶绿素a浓度为指标,初步探讨了桑沟湾贝类的生态容量。
Resumo:
浮游动物在海洋生态系统物质循环和能量流动中起着至关重要的作用。浮游动物物种组成、生物量和次级生产力的变化会改变生态系统的结构和功能。在黄海生态系统中如何描述这个过程,并使它易于模拟是本论文的研究目的。生物量和生产力是海洋生态系统食物网的基础。谁是浮游动物生物量和次级生产力的基础?哪些种类在生态系统中起关键作用?这些问题在黄海这样的温带陆架边缘海区很难回答,原因是物种组成、生物量和生产力的季节变化显著。因此,在对黄海食物产出的关键过程进行模拟时,需要应用既准确又简便的方法来对浮游动物群落的生态过程进行模拟。在对黄海浮游动物群落结构和物理海洋学特征进行充分的分析之后,浮游动物功能群的方法被确定用来进行黄海生态系统结构和功能的模拟。 根据浮游动物的粒径、摄食习性和营养功能,黄海浮游动物被分为6个功能群:大型浮游甲壳动物功能群(Giant crustacean,GC)、大型桡足类功能群(Large copepods, LC)、小型桡足类功能群(Small copepods,SC)、毛颚类功能群(Chaetognaths)、水母类功能群(Medusae)和海樽类功能群(Salps)。GC、LC和SC是按照粒径大小而划分的功能群,他们是高营养层次的主要食物资源。毛颚类和水母类是两类胶质性的肉食性浮游动物功能群,他们与高营养层次竞争摄食饵料浮游动物;海樽类与其他浮游动物种类竞争摄食浮游植物,而本身的物质和能量却不能有效的传递到高营养层次。本文研究报道了浮游动物各功能群的时空分布、基于浮游动物动能群的黄海生态区划分、饵料浮游动物功能群的生产力、毛颚类对浮游动物的摄食压力以及中华哲水蚤(Calanus sinicus)的摄食生态学。 春季,浮游动物生物量为2.1 g m–2,GC、LC和SC对生物量的贡献率分别为19, 44 和 26%。高生物量的LC和SC功能群主要分布于山东半岛南岸的近岸海域,而GC主要分布在远岸站位。夏季,浮游动物的生物量为3.1 g m–2,GC贡献了73%。GC、LC和SC主要分布在黄海的中部海域。秋季,浮游动物生物量为1.8 g m–2,GC、LC和SC的贡献率相似,分别为36, 33和23%,高生物量的GC和LC分布在黄海中部,而SC主要分布在远岸站位。GC和LC是冬季浮游动物生物量(2.9 g m–2)的优势功能群,分别贡献率了57%和27%,高生物量的GC、LC和SC都分布在黄海的中部海域。与GC、LC和SC相比,毛颚类生物量较低,主要分布于黄海的中北部海域。水母类(本文中指小型水母类)和海樽类斑块分布明显,主要分布于黄海沿岸和北部海域。属于不同功能群的约10个种类为浮游动物的优势种,控制着浮游动物群落的动态。 春季,黄海可以被分成4个浮游动物生态区,浮游动物生物量的分布中心位于山东半岛南岸近岸海域,与第一个生态区相对应,LC和SC在分布中心起主要的控制作用;夏、秋和冬季,黄海分别被分成3、4和3个生态区,浮游动物生物量的分布中心均位于黄海的中部海域,均与各季节的第一个生态区相对应,GC和LC是分布中心生态区的优势功能群,对分布中心起主要的控制作用。黄海冷水团(YSCBW)在GC、LC和SC的空间分布模式中起着重要的作用。黄海不同季节浮游动物生态区的空间分布模式及生态区中起控制作用的优势功能群类别有着重要的生态学意义。 我们将饵料浮游动物功能群细化为0.16–0.25 mm、0.25–0.5 mm、0.5–1 mm、1–2 mm和 >2 mm5个粒径组。应用生物能量学的方法研究了不同粒径浮游动物的生产力。结果表明:浮游动物次级生产力5月份最高,为91.9 mg C m–2 d–1,其次是6月和9月,分别为75.6 mg C m–2 d–1和65.5 mg C m–2 d–1,8月、3月和12月较低,仅为42.3 mg C m–2 d–1、35.9 mg C m–2 d–1和27.9 mg C m–2 d–1。根据这些结果,黄海浮游动物年次级生产力为18.9 g C m–2 year–1。0.16–0.25 mm和 0.25–0.5 mm 两个粒径组对浮游动物次级生产力的贡献率为58–79%,即相对应的SC功能群的周转率(P/B, 0.091–0.193 d–1)要高于GC和LC。 黄海毛颚类功能群的优势种类为强壮箭虫(Sagitta crassa)、纳嘎箭虫(S. nagae)、肥胖箭虫(S. enflata)和百陶箭虫(S. bedoti)。我们对这四种箭虫的生产力和对浮游动物生物量和生产力的摄食压力进行了研究。结果表明:黄海毛颚类总的生物量为98–217 mg m–2,总的生产力为1.22–2.36 mg C m–2 d–1。黄海毛颚类的生物量占浮游动物总生物量的6.35–14.47%,而生产力仅占浮游动物总生产力的2.54–6.04%。强壮箭虫和纳嘎箭虫是黄海毛颚类功能群的绝对优势种,控制着黄海毛颚类群落的动态。黄海毛颚类总的摄食率为4.24–8.18 mg C m–2d–1,对浮游动物现存量和生产力总的摄食压力分别为为0.94%和12.56%。黄海冬季,浮游动物的现存量和生产力为0.4 g C m–2和0.026 g C m–2d–1,而毛颚类的摄食压力却达到了全年的最大值,为1.4%和20.94%。因此,毛颚类的摄食可能对冬季浮游动物群落结构造成重要的影响。通过不同体长组箭虫的摄食率可以推断,黄海毛颚类全年主要摄食小型桡足类,对SC功能群的摄食压力最大。但是在夏季黄海冷水团形成的月份,毛颚类对前体长为2 mm的LC功能群中的种类摄食压力也较大,但此时,由于优势种中华哲水蚤进入滞育阶段,因此毛颚类的摄食会对其种群数量造成严重的影响。 中华哲水蚤在春、秋季的摄食率分别为2.08–11.46和0.26–3.70 µg C female–1 day–1,与微型浮游生物的现存量呈显著的正相关。春季,在黄海的北部,中华哲水蚤通过摄食微型浮游生物吸收的碳量能够满足其代谢和繁殖需求,而在黄海的南部和秋季黄海冷水团锋区附近,中华哲水蚤必须通过摄食其他类型的食物资源来维持其代谢和生殖需求。较低的摄食率、无产卵以及种群中CV期桡足幼体占优势表明,秋季中华哲水蚤在黄海冷水团区域内处于滞育状态。中华哲水蚤优先摄食微型原生动物,并且春季中华哲水蚤总的生长效率(GGE, 3–39%)与食物中微型原生动物的比例呈显著的正相关,表明微型原生动物具有较高的营养价值。但是,因较低的产卵率(0.16–12.6 eggs female–1 day–1)而导致的中华哲水蚤较低的总生长效率(13.4%),可能就是由于其食物中的必需营养成分含量不足(或缺乏)造成的。 本文从生物量的角度,对黄海浮游动物各功能群的时空分布、生态区划分进行了研究报道,对GC、LC和SC功能群的生产力、毛颚类对浮游动物的摄食压力和中华哲水蚤的摄食生态学进行了较为深入的研究,这些结果为黄海食物产出的关键过程的模拟提供了基础资料。今后的研究重点应搞清楚黄海水母类对浮游动物次级生产力的摄食压力和海樽类在食物产出模型中产生的负效应的程度,浮游动物各功能群的组成、季节变化和空间分布模式的长期变化,尤其是在气候变化和人类活动的影响下,将是今后研究的重点。
Resumo:
[目的]探讨短穗兔耳草个体对模拟增温的响应。[方法]采用国际冻原计划(ITEX)模拟增温对植物影响的研究方法,将温棚从小到大的顺序依次设为A、B、C、D、E5个温度梯度,分析不同温度梯度下短穗兔耳草个体生长特征的变化,研究模拟增温对短穗兔耳草生长特征的影响。[结果]随着温棚直径的减小,温度(地表温度和土壤温长)逐渐升高。与对照相比,A、B、C、D、E5个处理分别提高了2.68、1.57、1.20、1.07和0.69℃(地表气温),1.74、1.06、0.80、0.60和0.30℃(土壤温度)。短穗兔耳草从对照至A温室随着温度的升高,叶片数、叶片高度逐渐增加,而匍匐茎逐渐减少。[结论]叶片数变化与温度(地表温度和地温)呈正相关关系,增温促进了短穗兔耳草的营养生长,抑制了它的克隆繁殖能力。
Resumo:
以青海果洛黄河源区高寒退化草甸生态系统为对象,应用静态密闭箱-气相色谱法对高寒退化草甸生态系统CO_2释放进行了初步研究.结果表明:所选4种不同退化程度高寒草甸,即未退化草甸(A)、轻度退化草甸(B)、中度退化草甸(C)和重度退化草甸(D),其CO_2释放速率有明显的日变化特征,日最大排放速率在15:00-17:00左右出现,最低值出现于清晨7:00-9:00左右,释放白天大于夜晚;(2)CO_2释放速率具有明显的季节性变化特征,生长期CO_2释放速率明显高于枯黄期,8月为CO_2释放高峰期,1月或2月为CO_2释放低谷期;(3)CO_2释放速率的日变化主要受地表温度和5cm地温制约,季节动态与5cm地温呈显著正相关关系(P<0.01),本研究为进一步进行高寒退化草甸生态系统源江效应的准确估测提供科学依据.
Resumo:
本文详细讨论了世界芨芨草属的地理分布等问题。1.全世界芨芨草属共有23种1变种,分为5个组。本文对它们进行了系统介绍。2.属的地理分布,最北为北纬62°(羽茅、毛颖芨芨草),最南为北纬26°(林阴芨芨草)。就海拔而论,分布最低的海拔记录为120m(雀麦芨芨草),分布最高的海拔记录为4600m(干生芨芨草和藏芨芨草)。3.本文讨论了芨芨草属5个组(芨芨草组,钝基草组,直芒草组,新芨芨草组,拟芨芨草组)的系统位置,和每个组包括的种类及5个组的分布格局。4.根据塔赫他间世界植物区系区划,统计了每个区的种数,明显看出伊朗-土兰种类(18/24)是第一位,东亚区(14/24)居第二位。中国有17种,横断山脉地区、华北地区和唐古特地区种数最丰富(10种和9种)。5.研究结果表明:(A)从种的分布格局分析可见,横断山脉地区北部、唐古特地区东部和华北地区西部的交汇地是芨芨草属分布中心。(B)根据芨芨草属形态特征演化趋势分析和地史学资料推断横断山脉地区北部是芨芨草属的起源地。(C)有三条路线向外散布:a)从横断山脉地区向西沿喜马拉雅山脉,经克什米尔地区抵达地中海和中欧;b)从横断山脉向西北经祁连山、天山、塔里木盆地西侧山地,抵吉尔吉斯斯坦伊塞克湖;c)由横断山脉向东北经甘肃、宁夏、陕西、山西、河北和东北,抵达西伯利亚,东达勘察加半岛,西至鄂毕河上游,并经白令海峡陆桥分布到美国内华达山脉和落基山山脉。(D)该属植物集中分布于北半球半湿润、半干旱和干旱地区,以及极端干旱的荒漠区山地。植物的形成、发展和生态适应与气候相联系,并经过长期的适应和进化,塑造了一系列中生、旱中生的形态-生态特征和生活型。
Resumo:
The inherent instability of metabolite production in plant cell culture-based bioprocessing is a major problem hindering its commercialization. To understand the extent and causes of this instability, this study was aimed at understanding the variability of anthocyanin accumulation during long-term subcultures, as well as within subculture batches, in Vitis vinifera cell cultures. Therefore, four cell line suspensions of Vitis vinitera L. var. Gamay Freaux, A, B, C and D, originated from the same callus by cell-aggregate cloning, were established with starting anthocyanin contents of 2.73 +/- 0.15, 1.45 +/- 0.04, 0.77 +/- 0.024 and 0.27 +/- 0.04 CV (Color Value)/g-FCW (fresh cell weight), respectively. During weekly subculturing of 33 batches over 8 months, the anthocyanin biosynthetic capacity was gradually lost at various rates, for all four cell lines, regardless of the significant difference in the starting anthocyanin content. Contrary to this general trend, a significant fluctuation in the anthocyanin content was observed, but with an irregular cyclic pattern. The variabilities in the anthocyanin content between the subcultures for the 33 batches, as represented by the variation coefficient (VC), were 58, 57, 54, and 84% for V vinifera cell lines A, B, C and D, respectively. Within one subculture, the VCs from 12 replicate flasks for each of 12 independent subcultures were averaged, and found to be 9.7%, ranging from 4 to 17%. High- and low-producing cell lines, VV05 and VV06, with 1.8-fold differences in their basal anthocyanin contents, exhibited different inducibilities to L-phenylalanine feeding, methyl jasmonate and light irradiation. The low-producing cell line, showed greater potential in enhanced the anthocyanin production.