49 resultados para Condition De Brézis-crandall and Pazy
Resumo:
Karst collapse is one of the most important engineering geology hazards in Karst district, which seriously endangers the living of humankind and the environment around us, as well as the natural resources. Generally speaking, there exist three processes of overburden karst collapse:the formation of soil cavity, the expansion of soil cavity and the fall of the cavity roof. During these processes, groundwater is always the most active factor and plays a key role. Pumping will bring into the great change of groundwater in flow state, flowrate, frequency of fluctuation as well as hydraulic gradient and will speed the fall. Statistics shows that most of the man-made karst collapse are induced by pumping, so studying the mechanism of Karst collapse induced by pumping will provide theoretical base for the prediction and precaution of collapse. By theoretically studying the initial condition for the forming and expanding of a soil cavity, Spalling step by step the essential mechanism of Karst collapse induced by pumping is put forward. The catastrophe model for the collapse induced by pumping is set up to predict the fall probability of a cavity roof, and the criterion for the collapse is determined. Simultaneously, Karst collapse induced by pumping is predicted with manmade neural network theory. Finally, the appropriate precaution measurements for the collapse induced by pumping are provided. The creative opinions of the paper is following: The initial condition of forming a soil cavity is put forwarded as formula (4-1-5), (4-1-24),(4-1-25) and (4-1-27); which provide theoretical base for foreclosing the formation of a soil cavity and defending collapse. Spaliing step by step as the essential mechanism of Karst collapse induced by pumping is put forward. The spaliing force is defined as formula (4-2-15). The condition for the expanding of a soil cavity is that spaliing force is greater than tensile strength of soil. The stability of a soil cavity is first studied with catastrophe theory. It is concluded that the process of development up to ground collapse of a small cavity is continuous, however, the process of a big cavity is catastrophic. It is feasibility that the Karst collapse be predicted with manmade neural network theory as a new way.
Resumo:
Ordos Basin is a typical cratonic petroliferous basin with 40 oil-gas bearing bed sets. It is featured as stable multicycle sedimentation, gentle formation, and less structures. The reservoir beds in Upper Paleozoic and Mesozoicare are mainly low density, low permeability, strong lateral change, and strong vertical heterogeneous. The well-known Loess Plateau in the southern area and Maowusu Desert, Kubuqi Desert and Ordos Grasslands in the northern area cover the basin, so seismic data acquisition in this area is very difficult and the data often takes on inadequate precision, strong interference, low signal-noise ratio, and low resolution. Because of the complicated condition of the surface and the underground, it is very difficult to distinguish the thin beds and study the land facies high-resolution lithologic sequence stratigraphy according to routine seismic profile. Therefore, a method, which have clearly physical significance, based on advanced mathematical physics theory and algorithmic and can improve the precision of the detection on the thin sand-peat interbed configurations of land facies, is in demand to put forward.Generalized S Transform (GST) processing method provides a new method of phase space analysis for seismic data. Compared with wavelet transform, both of them have very good localization characteristics; however, directly related to the Fourier spectra, GST has clearer physical significance, moreover, GST adopts a technology to best approach seismic wavelets and transforms the seismic data into time-scale domain, and breaks through the limit of the fixed wavelet in S transform, so GST has extensive adaptability. Based on tracing the development of the ideas and theories from wavelet transform, S transform to GST, we studied how to improve the precision of the detection on the thin stratum by GST.Noise has strong influence on sequence detecting in GST, especially in the low signal-noise ratio data. We studied the distribution rule of colored noise in GST domain, and proposed a technology to distinguish the signal and noise in GST domain. We discussed two types of noises: white noise and red noise, in which noise satisfy statistical autoregression model. For these two model, the noise-signal detection technology based on GST all get good result. It proved that the GST domain noise-signal detection technology could be used to real seismic data, and could effectively avoid noise influence on seismic sequence detecting.On the seismic profile after GST processing, high amplitude energy intensive zone, schollen, strip and lentoid dead zone and disarray zone maybe represent specifically geologic meanings according to given geologic background. Using seismic sequence detection profile and combining other seismic interpretation technologies, we can elaborate depict the shape of palaeo-geomorphology, effectively estimate sand stretch, distinguish sedimentary facies, determine target area, and directly guide oil-gas exploration.In the lateral reservoir prediction in XF oilfield of Ordos Basin, it played very important role in the estimation of sand stretch that the study of palaeo-geomorphology of Triassic System and the partition of inner sequence of the stratum group. According to the high-resolution seismic profile after GST processing, we pointed out that the C8 Member of Yanchang Formation in DZ area and C8 Member in BM area are the same deposit. It provided the foundation for getting 430 million tons predicting reserves and unite building 3 million tons off-take potential.In tackling key problem study for SLG gas-field, according to the high-resolution seismic sequence profile, we determined that the deposit direction of H8 member is approximately N-S or NNE-SS W. Using the seismic sequence profile, combining with layer-level profile, we can interpret the shape of entrenched stream. The sunken lenticle indicates the high-energy stream channel, which has stronger hydropower. By this way we drew out three high-energy stream channels' outline, and determined the target areas for exploitation. Finding high-energy braided river by high-resolution sequence processing is the key technology in SLG area.In ZZ area, we studied the distribution of the main reservoir bed-S23, which is shallow delta thin sand bed, by GST processing. From the seismic sequence profile, we discovered that the schollen thick sand beds are only local distributed, and most of them are distributary channel sand and distributary bar deposit. Then we determined that the S23 sand deposit direction is NW-SE in west, N-S in central and NE-SW in east. The high detecting seismic sequence interpretation profiles have been tested by 14 wells, 2 wells mismatch and the coincidence rate is 85.7%. Based on the profiles we suggested 3 predicted wells, one well (Yu54) completed and the other two is still drilling. The completed on Is coincident with the forecastThe paper testified that GST is a effective technology to get high- resolution seismic sequence profile, compartmentalize deposit microfacies, confirm strike direction of sandstone and make sure of the distribution range of oil-gas bearing sandstone, and is the gordian technique for the exploration of lithologic gas-oil pool in complicated areas.
Resumo:
The content of this paper is based on the research work while the author took part in the key project of NSFC and the key project of Knowledge Innovation of CAS. The whole paper is expanded by introduction of the inevitable boundary problem during seismic migration and inversion. Boundary problem is a popular issue in seismic data processing. At the presence of artificial boundary, reflected wave which does not exist in reality comes to presence when the incident seismic wave arrives at the artificial boundary. That will interfere the propagation of seismic wave and cause alias information on the processed profile. Furthermore, the quality of the whole seismic profile will decrease and the subsequent work will fail.This paper has also made a review on the development of seismic migration, expatiated temporary seismic migration status and predicted the possible break through. Aiming at the absorbing boundary problem in migration, we have deduced the wide angle absorbing boundary condition and made a compare with the boundary effect of Toepiitz matrix fast approximate computation.During the process of fast approximate inversion computation of Toepiitz system, we have introduced the pre-conditioned conjugate gradient method employing co circulant extension to construct pre-conditioned matrix. Especially, employment of combined preconditioner will reduce the boundary effect during computation.Comparing the boundary problem in seismic migration with that in Toepiitz matrix inversion we find that the change of boundary condition will lead to the change of coefficient matrix eigenvalues and the change of coefficient matrix eigenvalues will cause boundary effect. In this paper, the author has made an qualitative analysis of the relationship between the coefficient matrix eigenvalues and the boundary effect. Quantitative analysis is worthy of further research.
Resumo:
Among the cognitive studies of action, an important behavioral method is used to observe Reaction Time (RT) and Movement Time (MT) as the functions of motor parameters. RT is measured from the beginning of target presentation to the initiation of a movement, which is regarded as the programming of the ongoing movement. MT is measured from the initiation to the end of the movement, which is regarded as the execution of the movement. However, the relationship between RT and motor parameters remains uncertain till now. Under the uncertainty many related issues cannot be settled for long period, especially the issues as whether the amplitude effect appears during RT, or what should the amplitude effect be during RT. The present study aimed to find out the amplitude effect and the related cognitive process under different experimental conditions. First, we discussed the potential composition of RT and suggested that RT that normally measured in previous experiments might not reflect motor programming very well. Then we designed a series experiments to observe the relationship between RT and motor programming by using different Index of Difficulty (ID), different instructions in which speed and accuracy were emphasized respectively, different vision condition during movement execution and Go/NoGo paradigm. Meanwhile, we compared the amplitude effect under the respective RT to make the specific conclusion about the amplitude effect, and the relationship between RT and MT as well. The main findings are showed as following. 1) Because of the existing of “preview”, “visual feedback control” and “speed-accuracy tradeoff”, RT reflects motor programming differently under different experimental conditions. 2) Under different experimental conditions, the amplitude effect on RT varies. RT could be too short to exhibit the amplitude effect. Or the amplitude effect could be that more RT is needed for shorter movement when RT is prolonged. Or the amplitude effect could be that more RT is needed for longer movement when RT is further prolonged. 3) Under the present experimental conditions, the amplitude effect on MT showed consistently that longer movement needs longer MT. 4) Under the present experimental conditions, the relationship between RT and MT is a kind of compensation. The present study has important theoretic significance. The cognitive process of action is an important part of human cognitive behavior. The related studies could be very helpful for human people to know about themselves and the relation between themselves and the surroundings as well. Keywords motor programming; amplitude effect; Reaction Time (RT); Movement Time (MT)
Resumo:
Although studies on placebo effect proved the placebo expectation established by pain-alleviating treatment could significantly alleviate later pain perception, or the placebo expectation established by anxiety-reducing treatment could significantly reduce the intensity of induced negative feelings, it is still unclear whether or not the placebo effect can occur in a transferable manner. That is, we still don’t know if the placebo expectation derived from pain-alleviating can significantly reduce later negative emotional arousal or not. Experiment 1: We compared the effect of the verbal expectation (purely verbal induction and without pain-alleviating reinforcement) with the reinforced expectation (building the belief in the placebo’s ataractic efficiency on unpleasant picture processing by secret reduction of the intensity of the pain-evoking stimulus) on the negative emotion. The results showed that the expectation, which was reinforced by actual analgesia, was transferable and could produce significant placebo effect on negative emotional arousal. However, the expectation that was merely induced by verbal instruction did not have such power. Experiment 2 both examined the direct analgesic effect of the placebo on the sensory pain (how strong is the pain stimulus) and emotional pain (how disturbing is the pain stimulus) and the transferable ataractic effect of the placebo on the negative emotion (how disturbing is the emotional picture stimulus), and further proved that the placebo expectation that was established from pain-reducing reinforcement not only induced significant placebo effect on pain, but also significant placebo effect on unpleasant feeling. These results support the viewpoint that the reduction of affective pain based on the conditioning mechanism plays an important role in the placebo analgesia, but can’t explain the transferred placebo effect on visual unpleasantness. Experiment 3 continued to use the paradigm of the reinforced expectation group and recorded the EEG activities, the data showed that the transferable placebo treatment was accompanied with decreased P2 amplitude and increased N2 distributed, and significant differences between the transferable placebo condition and the control condition (i.e., P2 and N2) were observed within the first 150-300 ms, a duration brief enough to rule out the possibility that differences between the two conditions merely reflect a bias “to try to please the investigator. In Experiment 4, we selected the placebo responders in the pre-experiment and let them to go through the formal fMRI scan. The results found that the transferable placebo treatment reduced the negative emotional response, emotion-responsive regions such as the amygdala, insula, anterior cingulate cortex and the thalamus showed an attenuated activation. And in the placebo condition, there was an enhanced activation in the subcollosal gyrus, which may be involved in emotional regulation. In conclusion, the transferable placebo treatment induced the reliable placebo effect on the behavior, EEG activity and bold signal, and we attempted to discuss the pychophysiological mechanism based on the positive expectancy.
Resumo:
The present study explored the influence of working memory span on accentuation effects in discourse comprehension from the approach of individual difference. High and low working memory span subjects were selected by Reading Span Test. Sentence-by-sentence Auditory Moving Window paradigm was employed to measure the effects of accentuation on discourse comprehension. The on-line processing time of discourse comprehension was compared between consistent accentuation condition, inconsistent accentuation condition and controlled condition. The results indicated that the accentuation effects were influenced by working memory capacity. For low working memory subjects, consistent accentuation speeded up the on-line processing of spoken discourse, inconsistent accentuation slowed down the on-line processing of spoken discourse. But for high working memory span subjects, neither effect was manifested. The only significant difference was found between the condition of inconsistent accentuation and consistent accentuation. During spoken discourse comprehension, there was no significant difference in the on-line processing time between high and low working memory span subjects in consistent accentuation condition as well as in neutral accentuation condition. However, in the condition of inconsistence accentuation, low span subjects spent significantly more time on the on-line processing of spoken discourse than high span subjects. The results could be explained by the controlled attention view of working memory.
Resumo:
Self-regulation has recently become an important topic in cognitive and developmental domain. According to previous theories and experimental studies, it is shown that self-regulation consist of both a personality (or social) aspect and a behavioral cognitive aspect of psychology. Self-regulation can be divided into self-regulation personality and self-regulation ability. In the present study researches have been carried out from two perspectives: child development and individual differences. We are eager to explore the characteristics of self-regulation in terms of human cognitive development. In the present study, we chose two groups of early adolescences one with high intelligence and the other with normal intelligence. In Study One Questionnaires were used to compare whether the highly intelligent group had had better self-regulation personality than the normal group. In Study Two experimental psychology tasks were used to compare whether highly intelligent children had had better self-regulation cognitive abilities than their normal peers. Finally, in Study Three we combined the results of Study One and Study Two to further explore the neural mechanisms for highly intelligent children with respect to their good self-regulation abilities. Some main results and conclusions are as follows: (1) Questionnaire results showed that highly intelligent children had better self-regulation personalities, and they got higher scores on the personalities related to self-regulation such as, self-reliance, stability, rule-consciousness. They also got higher scores on self-consciousness which meant that they could know their own self better than the normal children. (2) Among the three levels of cognitive difficulties in self-regulation abilities, the highly intelligent children had faster reaction speed than normal children in the primary self-regulation tasks. In the intermediate self-regulation tasks, highly intelligent children’s inhibition processing and executive processing were both better than their normal peers. In the advanced self-regulation tasks, highly intelligent children again had faster reaction speed and more reaction accuracy than their normal peers when facing with conflict and inconsistency experimental conditions,. Regression model’s results showed that primary and advanced self-regulation abilites had larger predictive power than intermediate self-regualation ability. (3) Our neural experiments showed that highly intelligent children had more efficient neural automatic processing ability than normal children. They also had better, faster and larger neural reaction to novel stimuli under pre-attentional condition which made good and firm neural basis for self-regualation. Highly intelligent children had more mature frontal lobe and pariental functions for inhibition processing and executive processing. P3 component in ERP was closely related to executive processing which mainly activated pariental function. There were two time-periods for inhibition processing—first it was the pariental function and later it was the coordination function of frontal and pariental lobes. While conflict control task had pariental N2 and frontal-pariental P3 neural sources, highly intelligent children had much smaller N2 and shorter P3 latency than normal children. Inconsistency conditions induced larger N2 than conditions without inconsistency, and conditions without inconsistency (or Conflict) induced higher P3 amplitudes than with Inconsistency (or Conflict) conditions. In conclusion, the healthy development of self-regulation was very important for children’s personality and cognition maturity, and self-regulation had its own specific characteristics in ways of presentation and ways of development. Better understanding of self-regulation can further help the exploration of the nature of human intelligence and consciousness.
Resumo:
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.
Resumo:
Small fish abundance is usually high in heavily vegetated habitats in Yangtze lakes, China. Visual and swimming barriers created by dense macrophytes beds could reduce feeding efficiency and growth of small fishes. We tested the hypothesis that small fishes in habitats with dense macrophytes would show decreased feeding efficiency and reduced growth rates by comparing feeding efficiency (measured as the relative weight of fore-gut contents), total length, and condition factor of four small young-of-the-year fishes collected in the near-shore (heavily vegetated) and central (less vegetated) areas of Liangzi Lake. Feeding efficiency, total length, or condition factor were each significantly reduced in the near-shore area compared with the central area for Ctenogobius giurinus, Pseudorasbora parva and Carassius auratus auratus. This supports our hypothesis that vegetation abundance may mediate feeding efficiency and growth of small fishes. Although Hypseleotris swinhonis did not show significant decreases in feeding efficiency or growth in the near-shore area, there was not any reversed tendency, i.e. increased feeding rate or growth in the near-shore area compared to the central area.