74 resultados para Collimators (Optical instrument)
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A compact multiterawatt laser system based on optical parametric chirped pulse amplification is demonstrated. Chirped pulses are amplified from 20 pJ to 900 mJ by two lithium triborate optical parametric preamplifiers and a final KDP optical parametric power amplifier with a pump energy of 5 J at 532 nm from Nd:YAG-Nd: glass hybrid amplifiers, After compression, we obtained a final output of 570-mJ-155-fs pulses with a peak power of 3.67 TW, which is the highest output power from an optical parametric chirped pulse amplification laser, to the best of our knowledge. (C) 2002 Optical Society of America.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In an optical parametric chirped pulse amplification (OPCPA) laser system, residual phase dispersion should be compensated as much as possible to shorten the amplified pulses and improve the pulse contrast ratio. Expressions of orders of the induced phases in collinear optical parametric amplification (OPA) processes are presented at the central signal wavelength to depict a clear physics picture and to simplify the design of phase compensation. As examples, we simulate two OPCPA systems to compensate for the phases up to the partial fourth-order terms, and obtain flat phase spectra of 200-nm bandwidth at 1064 nm and 90-nm at 800 nm.
Resumo:
A theoretical investigation of the nonlinear copropagation of two optical pulses of different frequencies in a photonic crystal fiber is presented. Different phenomena are observed depending on whether the wavelength of the signal pulse is located in the normal or the anomalous dispersion region. In particular, it is found that the phenomenon of pulse trapping occurs when the signal wavelength is located in the normal dispersion region while the pump wavelength is located in the anomalous dispersion region. The signal pulse suffers cross-phase modulation by the Raman shifted soliton pulse and it is trapped and copropagates with the Raman soliton pulse along the fiber. As the input peak power of the pump pulse is increased, the red-shift of the Raman soliton is considerably enhanced with the simultaneous further blue-shift of the trapped pulse to satisfy the condition of group velocity matching.
Resumo:
An optical parametric chirped-pulse amplification system is demonstrated to provide 32.9% pump-to-signal conversion efficiency . Special techniques are used to make the signal and pump pulses match with each other in both spectral and temporal domains. The broadband 9.5-mJ pulses are produced at the repetition rate of 1 Hz with the gain of over 1.9 x 10(8). The output energy fluctuation of 7.8% is achieved for the saturated amplification process against the pump fluctuation of 10%.
Resumo:
In this paper, a new method for designing three-zone optical pupil filter is presented. The phase-only optical pupil filter and the amplitude-only optical pupil filters were designed. The first kind of pupil for optical data storage can increase the transverse resolution. The second kind of pupil filter can increase the axial and transverse resolution at the same time, which is applicable in three-dimension imaging in confocal microscopy. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
We build a compact high-conversion-efficiency and broadband tunable noncollinear optical parametric amplifier (OPA) in the infra-red (IR) pumped by a femtosecond Ti:sapphire CPA laser. The OPA consists of an internal seed of white-light continuum generator (WLG) and two noncollinear optical parametric amplifiers. The tunable wavelength range is from 1.2 mu m to 2.4 mu m for both signal and idle pulses. The total OPA efficiency in the last OPA stage reaches about 40% in a wider tunable spectral range (from 1.3 mu m to 1.7 mu m for signal pulse, from 1.5 mu m to 2.0 mu m for idle pulse respectively).
Resumo:
Widely tunable optical parametric amplification (OPA) in the IR region through quasi-phase-matching technology is demonstrated theoretically in periodically-poled lithium niobate (PPLN). For a 532nm pump wavelength and a broadband signal wavelength near 1300 nm, we can obtain the optimum grating period from phase-matching curves for different grating periods to achieve continuously tunable OPA by tuning the angle in a small range. Tunable OPA range of 200nm near 1300 mn can be obtained with a tuning incidence signal angle of 2.2 degrees.
Resumo:
We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America
Resumo:
We investigate the steady-state optical bistability behavior in a three-level A-type atomic system closed by a microwave field under the condition that the applied fields are in resonance with corresponding atomic transitions. It is shown that the bistable hysteresis cycles can be controlled by both the amplitude and the phase of the microwave field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.
Resumo:
Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A gain amplifier for degenerated optical parametric chirped-pulse amplification (OPCPA) with lithium triborate and cesium lithium borate (CLBO) crystals was demonstrated in a near-collinear configuration, The signal gain of the final energy amplifier with CLBO was similar to 6. After compression, the 123 fs pulse duration was obtained. Compared with potassium dihydrogen phosphate, it is confirmed that CLBO is more effective as a nonlinear crystal in a final power amplifier for terawatt or petawatt OPCPA systems. To our knowledge, this is the first demonstration of OPCPA with CLBO. (c) 2006 Optical Society of America.
Resumo:
The properties of noncollinear optical parametric amplification (NOPA) based on quasi-phase matching of periodically poled crystals are investigated, under the condition that the group velocity matching (GVM) of the signal and idler pulses is satisfied. Our study focuses on the dependence of the gain spectrum upon the noncollinear angle, crystal temperature, and crystal angle with periodically poled KTiOPO4 (PPKTP), periodically poled LiNbO3 (PPLN), and periodically poled LiTaO3 (PPLT), and the NOPA gain properties of the three crystals are compared. Broad gain bandwidth exists above 85 nm at a signal wavelength of 800 nm with a 532 nm pump pulse, with proper noncollinear angle and grating period at a fixed temperature for GVM. Deviation from the group-velocity-matched noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. Moreover, there is a large capability of crystal angle tuning.