292 resultados para Co-composting
Resumo:
The emission intensity of Ni2+ at 1200 nm in transparent ZnO-Al2O3-SiO2 glass ceramics containing ZnAl2O4 nanocrystals is improved approximately 8 times by Cr3+ codoping with 532 nm excitation. This enhanced emission could be attributed to an efficient energy transfer from Cr3+ to Ni2+, which is confirmed by time-resolved emission spectra. The energy transfer efficiency is estimated to be 57% and the energy transfer mechanism is also discussed. (C) 2008 Optical Society of America.
Resumo:
The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nanopowder of Y(1.84)mLa(0.16)O(3) was prepared by oxalate co-precipitation method. The powder was characterized by TG-DTA, XRD and TEM. The results show that the precursor is Re-2 (NO3)(2) (C2O4)(2)center dot 2H(2)O (Re=Y, La), and the Y1.84La0.16O3 nanopowders produced by calcining the precursor at 1000 degrees C for 4 h are 20 similar to 40 nm spherical particles and well dispersed. The powders were with high sintering activity and could be fabricated to transparent ceramic without additive at 1450 similar to 1550 degrees C in H-2 atmosphere for 3 hours. The total transmission of the transparent ceramic could reach 80%.
Resumo:
应用中频感应提拉法成功生长出新型的Co^2+,Er^3+:Y3Al5O12晶体。研究了室温下晶体的吸收光谱性能。结合Er^3+:Y3Al5O12晶体的光谱,并利用调Q判据对Co^2+,Er^3+:Y3Al5O12晶体调Q特性进行了简单的分析。结果表明Co^2+,Er^3+:YAG晶体是一种很有潜力的白调Q激光晶体。
Resumo:
Observation of room-temperature ferromagnetisin in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1-xNix)(2)O-3 (0 <= x <= 0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at roomtemperature. The highest saturation magnetization (0.453 mu B/Fe + Ni ions) moment is reached in the sample with x = 0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports room-temperature ferromagnetism in Co- and Cu-doped In2O3 samples synthesized by a solid-state reaction method. Structure and composition analyses revealed that Co and Cu were incorporated into the In2O3 lattices. Photoluminescence measurement revealed an additional emission at 520 urn from these doped samples. The magnetic measurement showed that additional Cu doping greatly enhanced the ferromagnetism of In1.99Co0.01O3 bulk samples. The implication of the effects of additional Cu doping is also discussed. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
采用离子束溅射沉积了不同厚度的Co膜和Cu膜,利用四电极法测量了薄膜的电阻率,从而得到了Co膜和Cu膜的电导率随薄膜厚度的变化关系。实验结果表明,Co膜和Cu膜的电学特性都具有明显的尺寸效应。比较了同时考虑表面散射和晶界散射的电导理论得到的电导率公式与实验结果,不同薄膜厚度电导率的理论结果与实验结果符合较好。提出了厚度作为金属薄膜生长从不连续膜进入连续膜的一个特征判据,并利用原子力显微镜(AFM)观测了膜厚在特征厚度附近的Co膜和Cu膜的表面形貌。
Resumo:
Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.