95 resultados para Clock Synchronization
Resumo:
苔藓是高等植物(有胚植物或陆地植物)中最原始的一类,但种类却丰富多样,其形态和生长环境的多样化程度高于蕨类和裸子植物,且对极端环境的忍耐力更强,分布范围也更广。“特有”是一个地理概念,它是相对广布而言,当一个类群的分布范围有一定的限制时即为特有现象。“东亚特有”是指分布范围主要局限于中国,朝鲜,日本和蒙古等,向北可及俄罗斯远东地区,少数可分布至中国南部相邻地区的植物类群。东亚地区主要以温带植物区系为主,但也包含一些热带植物区系成分,还因为第四纪以来受冰川活动影响较少,因此植物种类非常丰富。东亚地区也是苔藓植物的多样性中心之一,这里有较多的特有成分。在我国总共分布有苔藓植物东亚特有属35属,其中苔类5属,藓类30属。长期以来,特有成分始终引起人们的极大关注,不仅是因为其在植物地理学上的重要性,还因为特有类群中包含了孓遗类群,往往系统位置比较关键,此外,大部分特有类群对人为干扰比较敏感,对其保护就愈加重要,因为它在这个地区的消失就意味着一个类群的灭绝。 我国对苔藓植物东亚特有类群已有较好的认识,在前人知识积累的基础之上,我们期望通过分子系统学的方法,开展对东亚特有苔藓属的研究,逐步揭开特有属植物的神秘面纱,最终在系统树上找到它们各自应该属于自己的位置。 在本次研究中,我们总共得到十一个苔藓植物东亚特有属的新鲜材料。在实验室中我们对这十一个特有属叶绿体和核的六个基因(叶绿体atpB, rbcL, cp-SSU, cp-LSU 和核18S,26S rDNA)进行了测序,并在此基础之上,构建了来自苔藓植物106个属上述六个基因的联合矩阵,并对它们进行了系统学分析。本文所选十一个特有属中除三个苔类属和一个线齿藓类的属之外,其它七个特有属都属于侧蒴藓类。根据近几年的研究结果,侧蒴藓类中灰藓目被认为是起源自一次快速辐射演化,灰藓目各科之间的关系以及各科的范围都很难确定。即便本实验测序一万多bp,这一支之内的关系仍不能解决。 在以上结果的基础上,本文对线齿藓类的树发藓属(Microdendron)进行了较为详细的研究,我们用最大简约法分析了金发藓目15属,33种的18S, rbcL和trnL-F序列的联合矩阵。对树发藓属的微形态进行了电镜扫描。形态和分子数据的分析结果表明,这个特有属在属级水平是不成立的,它仅是小金发藓属的一个种。此结果支持将这个东亚特有属降为种的等级。此外,本文还对囊绒苔属(Trichocoleopsis)和新绒苔属(Neotrichocolea)的系统位置做了比较详细的研究。我们分别分析了一个苔类植物57属的四基因(cp-SSU, cp-LSU, atpB and rbcL)矩阵和一个苔类植物24属的九基因(cp-SSU, cp-LSU, atpB, psbA, rps4, rbcL, 18S, 26S and nad5)联合矩阵,结果显示囊绒苔属和新绒苔属互为姐妹群关系,而毛叶苔属(Ptilidium)又是它们二者的姐妹群。研究结果支持了囊绒苔属和新绒苔属组成新绒苔科(Neotrichocoleaceae),而不同于前人的观点:将上述两属放置于毛叶苔科(Ptilidiaceae)、绒苔科(Trichocoleaceae)或多囊苔科(Lepidolaenaceae)。另外值得注意的是这两个特有属和毛叶苔属组成的一支位于叶苔类(Leafy liverwort)中“Leafy I”和“Leafy II”两大支之间,但这一支确切的系统位置没有解决,仍有待于进一步研究。 除此之外,本文还利用GenBank中的数据对东亚特有属日鳞苔属(Nipponolejeunea)和耳坠苔属(Ascidiota)(未获得实验材料)进行了初步的系统学分析。结果表明传统上放在细鳞苔科的日鳞苔属与毛耳苔科的毛耳苔属(Jubula)为姐妹群关系,建议将日鳞苔属置于毛耳苔科;耳坠苔属是光萼苔科的成员,属的分类等级是合理的。 最后本文利用罚分似然法,选取多个化石作为标定点,对来自苔藓植物主要类群及其它陆地植物共115个类群5个基因(atpB, rbcL, cp-SSU, cp-LSU, 18S)的矩阵进行了分子钟的分析,初步估算11个东亚特有属的分化时间。
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
综述了timeless基因的发现、多态性和重要功能。timeless是最先被发现的两个生物钟基因之一。生物钟的昼夜节律由PER、TIM、CLOCK和CYCLE 4个生物钟齿轮组成的正负反馈回路进行调节。其中TIM可以受光因子调控,它还可以与PER形成异二聚体,通过正负调控方式调节果蝇的昼夜节律行为。
Resumo:
Sequences of the mitochondrial cytochrome b (1140 bp) and nuclear IRBP (1152 bp) genes were used to assess the evolutionary history of Apodemus, using the complete set of Asian species. Our results indicate that speciation in Asia involved three radiations, which supports an earlier study. The initial radiation yielded A. argenteus (Japanese endemic), A. gurkha (Nepalese endemic), and the ancestral lineage of the remaining Asian species. This lineage subsequently diverged into four groups: agrarius-chevrieri (agrarius group), draco-latronum-semotus (draco group), A. peninsulae, and A. speciosus (Japanese endemic). The final step consisted of divergence within two species groups as a consequence of the geography of the Yunnan-Guizhou plateau and Taiwan. The ecological ability of two Apodemus-species to inhabit one locality via niche partitioning likely drove the second radiation and shaped the basic geographical pattern seen today: A. argenteus and A. speciosus in Japan, A. agrarius and A. peninsulae in northern China, and the A. agrarius and A. draco groups in southern China. The three radiations are estimated to have occurred 7.5, 6.6, and 1.8-0.8 Mya respectively, using the IRBP clock, based on rat-mouse divergence 12 Mya. (C) 2003 The Linnean Society of London.
Resumo:
In spite of several classification attempts among taxa of the genus Lepus, phylogenetic relationships still remain poorly understood. Here, we present molecular genetic evidence that may resolve some of the current incongruities in the phylogeny of the leporids. The complete mitochondrial cytb, 12S genes, and parts of ND4 and control region fragments were sequenced to examine phylogenetic relationships among Chinese hare taxa and other leporids throughout the World using maximum parsimony, maximum likelihood, and Bayesian phylogenetic reconstruction approaches. Using reconstructed phylogenies, we observed that the Chinese hare is not a single monophyletic group as originally thought. Instead, the data infers that the genus Lepus is monophyletic with three unique species groups: North American, Eurasian, and African. Ancestral area analysis indicated that ancestral Lepus arose in North America and then dispersed into Eurasia via the Bering Land Bridge eventually extending to Africa. Brooks Parsimony analysis showed that dispersal events followed by subsequent speciation have occurred in other geographic areas as well and resulted in the rapid radiation and speciation of Lepus. A Bayesian relaxed molecular clock approach based on the continuous autocorrelation of evolutionary rates along branches estimated the divergence time between the three major groups within Lepus. The genus appears to have arisen approximately 10.76 MYA (+/- 0.86 MYA), with most speciation events occurring during the Pliocene epoch (5.65 +/- 1.15 MYA similar to 1.12 +/- 10.47 MYA). (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Growth hormone is a classic molecule in the study of the molecular clock hypothesis as it exhibits a relatively constant rate of evolution in most mammalian orders except primates and artiodactyls, where dramatically enhanced rate of evolution (25-50-fold) has been reported. The rapid evolution of primate growth hormone occurred after the divergence of tarsiers and simians, but before the separation of old world monkeys (OWM) from new world monkeys (NWM). Interestingly, this event of rapid sequence evolution coincided with multiple duplications of the growth hormone gene, suggesting gene duplication as a possible cause of the accelerated sequence evolution. Here we determined 21 different GH-like sequences from four species of OWM and hominoids. Combining with published sequences from OWM and hominoids, our analysis demonstrates that multiple gene duplications and several gene conversion events both occurred in the evolutionary history of this gene family in OWM/hominoids. The episode of recent duplications of CSH-like genes in gibbon is accompanied with rapid sequence evolution likely resulting from relaxation of purifying selection. GHN genes in both hominoids and OWM are under strong purifying selection. In contrast, CSH genes in both lineages are probably not. GHV genes in OWM and hominoids evolved at different evolutionary rates and underwent different selective constraints. Our results disclosed the complex history of the primate growth hormone gene family and raised intriguing questions on the consequences of these evolutionary events. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Nectogaline shrews are a major component of the small mammalian fauna of Europe and Asia, and are notable for their diverse ecology, including utilization of aquatic habitats. So far, molecular phylogenetic analyses including nectogaline species have been unable to infer a well-resolved, well-supported phylogeny, thus limiting the power of comparative evolutionary and ecological analyses of the group. Here, we employ Bayesian phylogenetic analyses of eight mitochondrial and three nuclear genes to infer the phylogenetic relationships of nectogaline shrews. We subsequently use this phylogeny to assess the genetic diversity within the genus Episoriculus, and determine whether adaptation to aquatic habitats evolved independently multiple times. Moreover, we both analyze the fossil record and employ Bayesian relaxed clock divergence dating analyses of DNA to assess the impact of historical global climate change on the biogeography of Nectogalini. We infer strong support for the polyphyly of the genus Episoriculus. We also find strong evidence that the ability to heavily utilize aquatic habitats evolved independently in both Neomys and Chimarrogale + Nectogale lineages. Our Bayesian molecular divergence analysis suggests that the early history of Nectogalini is characterized by a rapid radiation at the Miocene/Pliocene boundary, thus potentially explaining the lack of resolution at the base of the tree. Finally, we find evidence that nectogalines once inhabited northern latitudes, but the global cooling and desiccating events at the Miocene/Pliocene and Pliocene/Pleistocene boundaries and Pleistocene glaciation resulted in the migration of most Nectogalini lineages to their present day southern distribution. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Phylogenetic relationships among 15 species of wood mice (genus Apodemus) were reconstructed to explore some long-standing taxonomic problems. The results provided support for the monophyly of the genus Apodemus, but could not reject the hypothesis of paraphyly for this genus. Our data divided the 15 species into four major groups: (1) the Sylvaemus group (A. sylvaticus, A. flavicollis, A. alpicola, and A. uralensis), (2) the Apodemus group (A. peninsulae, A. chevreri, A. agrarius, A. speciosus, A. draco, A. ilex, A. semotus, A. latronum, and A. mystacinus), (3) A. argenteus, and (4) A. gurkha. Our results also suggested that orestes should be a valid subspecies of A. draco rather than an independent species; in contrast, A. ilex from Yunnan may be regarded as a separate species rather than a synonym of orestes or draco. The species level status of A. latronum, tscherga as synonyms of A. uralensis, and A. chevrieri as a valid species and the closest sibling species of A. agrarius were further corroborated by our data. Applying a molecular clock with the divergences of Mus and Rattus set at 12 million years ago (Mya) as a calibration point, it was estimated that five old lineages (A. mystacinus and four major groups above) diverged in the late Miocene (7.82-12.74 Mya). Then the Apodemus group (excluding A. mystacinus) split into two subgroups: agrarius and draco, at about 7.17-9.95 Mya. Four species of the Sylvaemus group were estimated to diverge at about 2.92-5.21 Mya. The Hengduan Mountains Region was hypothesized to have played important roles in Apodemus evolutionary histories since the Pleistocene. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 in during the late Pliocene (about 2.6 MaBP).
Resumo:
脊椎动物在胚胎发育的过程中沿身体前后轴形成一定数目的暂时性结构-体节(somite),随着胚胎的继续发育每个体节分化成为生骨区、生皮区和生肌区,继而生成各种组织。近30年来,研究者们就体节的发生和分化提出了多种解释模型,这包括时钟波峰模型、反应扩散模型、时钟诱导模型、时钟痕迹模型等,这些模型从不同角度不同程度解释了动物体节发生和分化的不同现象。尽管每个模型仍然存在一些不足,但大多提出了时钟分节(segmental clock)这一概念。对鸡的c-hairy1和c-hairy2、鸡和小鼠的l-fng以及斑马
Resumo:
Gao-Yan Li, Xu-Zhen Wang, Ya-Hui Zhao, Jie Zhang, Chun-Guang Zhang, and Shun-Ping He (2009) Speciation and phylogeography of Opsariichthys bidens (Pisces: Cypriniformes: Cyprinidae) in China: analysis of the cytochrome b gene of mtDNA from diverse populations. Zoological Studies 48(4): 569-583. The cyprinid fish Opsariichthys bidens Gunther is distributed in all major river systems of continental East Asia, and represents an attractive model for phylogeographic studies among cyprinid species or within a given species. In this study, we investigated the phylogeographic and demographic history of this species, using partial sequences of the cytochrome (cyt) b gene in mitochondrial (mt)DNA. Fish samples were collected from almost all major river systems where O. bidens is distributed in China. Sequence analysis showed remarkably high polymorphism, with 125 haplotypes in the 234 specimens examined, and with 89.8% of haplotypes occurring in only 1 specimen. A neutrality test indicated that some groups were not at mutation-drift equilibrium, suggesting a past population expansion. These results were supported by a mismatch distribution analysis. Based on our analysis, O. bidens consists of 4 groups belonging to 2 clades. The divergence time of the 2 clades was estimated to be 11.06-8.04 my. This value corresponds to the time of the 2nd uplift of the Qinghai-Tibet Plateau, the emergence of the East Asian monsoon, and the Epoch-6 Event. A two species scheme is proposed. http://zoolstud.sinica.edu.tw/Journals/48.4/569.pdf
Resumo:
An out-of-Africa dispersal route has been proposed for many organisms, including modern man. However, counter examples of in-to-Africa dispersal routes are less common. In the present article, the phylogenetic relationships within the Labeoninae, a subfamily of cyprinid fishes distributed in Asia and Africa, were analyzed to investigate the biogeographic processes governing the modern distribution of these Asian and African cyprinids. The mitochondrial DNA cytochrome b gene was used as a molecular marker. The phylogenetic analysis indicated that the subfamily Labeoninae is a monophyletic group, with some Asian labeonins located at the basal position. Two subclades were found that contained both African and Asian species, which highlighted a need for further biogeographic analysis. Based on this analysis, it is proposed that the centre of origin of the Labeoninae was in East Asia. Molecular clock estimation suggests that the Labeoninae arose by the Early Miocene (similar to 23 MYA) during the period of the second Tibetan uplift. Subsequently, two dispersal events of labeonins from Asia into Africa occured in the Early Miocene (similar to 20 MYA) and Late Miocene (similar to 9 MYA) and serve as examples counter to out-of-Africa dispersal.
Resumo:
The genus Sinocyclocheilus is distributed in Yun-Gui Plateau and its surrounding region only, within more than 10 cave species showing different degrees of degeneration of eyes and pigmentation with wonderful adaptations. To present, published morphological and molecular phylogenetic hypotheses of Sinocyclocheilus from prior works are very different and the relationships within the genus are still far from clear. We obtained the sequences of cytochrome b (cyt b) and NADH dehydrogenase subunit 4 (ND4) of 34 species within Sinocyclocheilus, which represent the most dense taxon sampling to date. We performed Bayesian mixed models analyses with this data set. Under this phylogenetic framework, we estimated the divergence times of recovered clades using different methods under relaxed molecular clock. Our phyloegentic results supported the monophyly of Sinocyclocheilus and showed that this genus could be subdivided into 6 major clades. In addition, an earlier finding demonstrating the polyphyletic of cave species and the most basal position of S. jii was corroborated. Relaxed divergence-time estimation suggested that Sinocyclocheilus originated at the late Miocene, about 11 million years ago (Ma), which is older than what have been assumed.
Resumo:
The genus Sarcocheilichthys is a group of small cyprinid fishes comprising 10 species/sub-species widely distributed in East Asia, which represents a valuable model for understanding the speciation of freshwater fishes in East Asia. In the present study, the molecular phylogenetic relationship of the genus Sarcocheilichthys was investigated using a 1140 bp section of the mitochondrial cytochrome b gene. Two different tree-building methods, maximum parsimony (MP) and Bayesian methods, yielded trees with almost the same topology, yielding high bootstrap values or posterior probabilities. The results showed that the genus Sarcocheilichthys consists of two large clades, clades I and II. Clade I contains Sarcocheilichthys lacustris, Sarcocheilichthys sinensis and Sarcocheilichthys parvus, with S. parvus at a basal position. In clade II, Sarcocheilichthys variegatus microoculus is at a basal position; samples of the widespread species, Sarcocheilichthys nigripinnis, form a large subclade containing another valid species Sarcocheilichthys czerskii. Sarcocheilichthys kiangsiensis is retained at an intermediate position. Since S. czerskii is a valid species in the S. nigripinnis clade, remaining samples of S. nigripinnis form a paraphyly. This speciation process is attributed to geographical isolation and special environmental conditions experienced by S. czerskii and stable environments experienced by the other S. nigripinnis populations. This type of speciation process was suggested to be very common. Samples of Sarcocheilichthys sinensis sinensis and Sarcocheilichthys sinensis fukiensis that did not form their own monophyletic groups suggest an early stage of speciation and support their sub-species status. Molecular clock analysis indicates that the two major lineages of the genus Sarcocheilichthys, clades I and II diverged c. 8.89 million years ago (mya). Sarcocheilichthys v. microoculus from Japan probably diverged 4.78 mya from the Chinese group. The northern-southern clades of S. nigripinnis began to diverge c. 2.12 mya, while one lineage of S. nigripinnis evolved into a new species, S. czerski, c. 0.34 mya. (C) 2008 The Authors Journal compilation (C) 2008 The Fisheries Society of the British Isles.
Resumo:
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.