32 resultados para Climate-Vegetation Relationships
Resumo:
Recently, more and more attention has been paid to stable isotope ratios in terrestrial depositional systems. Among them, δ~(13)C value is mainly determined by the surface vegetation, while vegetation is directly related to climate, therefore, carbon isotope ratio in soil organic matter and pedogenic carbonate has been employed as an important paleoecological indicator. In order to test the paleoecological information extracted from stable isotope ratios in terrestrial depositional systems, it is necessary to study the relationships between δ~(13)C value in standing terrestrial plants and today climate, as well as between δ~(13)C value in modern surface soil organic matter and standing vegetation. Thus, these relationships were studied in this paper by means of analysing δ~(13)C in standing plants and modem surface soil organic matter in North China. The main results and conclusions are presented as following: 1. According to their δ~(13)C values, 40 C-4 species represent about 16% of the 257 plant species sarnpled from the North China. C-4 photosynthesis mainly occurs in Poaceae, Cyperaceae and Chenopidaceae families, and percentage representation of C-4 photosynthesis is up to 56% in Poaceae family. 2. The δ~(13)C values of C-3 plant species in North China vary from -21.7‰ to -32.0‰ with an average of -27.1‰, and 93% focus on the range of -24.0‰ ~ -30.0‰; δ~(13)C values of C-4 plant species in North China are between -10.0‰ ~ -15.5‰ with an average of -12.9‰, and 90% concentrate on the range of -11.0‰ ~ -15.0‰. 3. The δ~(13)C composition of C-3 plant species collected from Beijing, a semi-moist district, mainly vary between -27.0‰ ~ -30.0‰, and the average is -28.7‰; the δ ~(13)C values of plants in the semi-arid district, east and west to the Liu Pan Moutain, focus on the range of-26.0‰ ~ -29.0‰ and -25.0‰ ~ -28.0‰, respectively, with the mean value of -27.6‰ and -26.6‰, respectively; the δ~(13)C composition in the arid district dominantly vary from -24.0‰ to -29.0‰, with the average of -26.2‰, and among them, the δ~(13)C values of C-3 plant species in deserts are often between - 22‰ ~ -24‰; the δ~(13)C values in the cold mountain district concentrate on the range of -24.0‰ to -29.0‰, with the average of -26.3‰. 4. The main range of δ~(13)C composition of C-4 plant species, derived from Beijing, a semi-moist district, are -13.0‰ ~ -15.5‰; the semi-arid district, -11.0‰ ~ -14.0‰; the arid district, -11.0‰ ~ -14.0‰. The mean values of them are -14.0‰, -12.4‰,-12.7‰, respectively. 5. From east to west in North China, δ~(13)C values of C-3 plant species increase with longitude. The correlation between δ~(13)C ratios of C-3 plant species and longitude is linear. Changing temperate and precipitation and changing atmosphere pressure are spossible explanations. 6. Almost all C-3 plant species have the trends that their δ~(13)C values gradually increase with decreasing precipitation, decreasing temperature and increasing altitude. Our results show the increases of the δ~(13)C value by 0.30 ~ 0.45‰, 0.19 ~ 0.27‰ and 1.1 ~ 1.2‰ per 100 mm, I℃ and 1000 m, respectively, for all C-3 plant species together. 7. The δ~(13)C values of all C-3 plant species together and a part of C-3 species show highly significant linear correlation with the mean annual temperature, the mean annual precipitation and the altitude, and the results suggest that they can be used as proxies of these environmental variables, while, those without highly significant correlation, may be not suitable as the proxies. 8. The extent, which of responses of δ~(13)C composition to environmental variables, is different for each C-3 plant specie. 9. The δ~(13)C variations along altitude and longitude may be non-linear for C-4 p1ant species in North China. The mean annual temperature may be not important influential factor, thus, it suggests that the δ~(13)C composition of C-4 plant species may be not suitable as the proxy of the mean annual temperature. The influences of summer temperature on δ~(13)C values are much bigger than that of annual temperature, among them, the influence of September temperature is biggest. The mean annual precipitation may be one of the dominant influential factors, and it shows a highly significant non-linear relationship with δ~(13)C values, and the result indicates that δ~(13) C composition of C-4 plant species can be employed as the proxy of the mean annual precipitation. 10. The variations of δ~(13)C ratios do not show systematic trends along longitude, latitude and altitude for modern surface soil organic in Northwest China. ll. The δ~(13)C ratios of modern surface soil organic do not exhibit systematic patterns with temperature and precipitation in Northwest China, it suggests that, unless soil organic is transferred from pure C-3 or C-4 vegetation, the δ~(13)C composition of soil organic may be not used as proxies of climatic variables. 12. The δ~(13)C values of modem surface soil organic are heavier than that of standing vegetation, and the difference ofrnean δ~(13)C between them is -2.18‰. 13. Without considering the δ~(13)C difference between vegetation and soil organic, as well as the δ~(13)C drift in various enviromnent, we may not obtain the valuable information of C-3, C-4 relative biomass in vegetation. 14. The C-4 biomass contribution in vegetation increase with decreasing latitude, increasing longitude and decreasing altitude in Northwest China. The C-4 biomass almost are zero in those regions north to 38 ° N, or west to 100°E, or above 2400 m. 15. The C-4 relative biomass in vegetation increase with growing temperature and precipitation. and, C-4 plants are rare at those regions where the mean annual temperature is less 4 ℃, or the mean annual precipitation is less 200 mm, and their biomass contribution in vegetation are almost zero. Both the mean annual temperature and the mean annual average precipitation may be the important influential factors of C-4 distribution, but the dominant factors.
Resumo:
Surface pollen assemblages and their relationhips with the modern vegetation and climate provide a foundation for investigating palaeo-environment conditions by fossil pollen analysis. A promising trend of palynology is to link pollen data more closely with ecology. In this study, I summarized the characteristics of surface pollen assemblages and their quantitative relation with the vegetation and climate of the typical ecological regions in northern China, based on surface pollen analysis of 205 sites and investigating of modern vegetation and climate. The primary conclusions are as follows:The differences in surface pollen assemblages for different vegetation regions are obvious. In the forest communities, the arboreal pollen percentages are more than 30%, herbs less than 50% and shrubs less than 10%; total pollen concentrations are more than 106 grains/g. In the steppe communities, arboreal pollen percentages are generally less than 5%; herb pollen percentages are more than 90%, and Artemisia and Chenopodiaceae are dominant in the pollen assemblages; total pollen concentrations range from 103 to 106 grains/g. In the desert communities, arboreal pollen percentages are less than 5%. Although Chenopodiaceae and Artemisia still dominate the pollen assemblages, Ephedra, Tamaricaceae and Nitraria are also significant important in the pollen assemblages; total pollen concentrations are mostly less than 104grains/g. In the sub-alpine or high and cold meadow communities, arboreal pollen percentages are less than 30%. and Cyperaceae is one of the most significant-taxa in the pollen assemblages. In the shrub communities, the pollen assemblages are consistent with the zonal vegetation; shrub pollen percentages are mostly less than 20%, except for Artemisia and Hippophae rhamnoides communities.There are obvious trends for the pollen percentage ratios of Artemisia to Chenopodiaceae (A/C), Pinus to Artemisia (P/A) and arbor to non-arbor (AP/NAP) in the different ecological regions. In the temperate deciduous broad-leaved forest region, the P/A ratios are generally higher than 0.1, the A/C ratios higher than 2 and the AP/NAP ratios higher than 0.3. In the temperate steppe regions, the P/A ratios are generally less than 0.1, the A/C ratios higher than 1 and the AP/NAP ratios less than 0.1. In the temperate desert regions, the P/A ratios are generally less than 0.1, the A/C ratios less than 1, and the AP/NAP ratios less than 0.1.The study on the representation and indication of pollen to vegetation shows that Pinus, Artemisia, Betula, Chenopodiaceae, Ephedra, Selaginella sinensis etc. are over-representative in the pollen assemblages and can only indicate the regional vegetation. Some pollen types, such as Quercus, Carpinus, Picea, Abies, Elaeagus, Larix, Salix, Pterocelis, Juglans, Ulmus, Gleditsia, Cotinus, Oleaceae, Spiraea, Corylus, Ostryopsis, Vites, Tetraena, Caragana, Tamaricaceae, Zygophyllum, Nitraria, Cyperaceae, Sanguisorba etc. are under-representative in the pollen assemblages, and can indicate the plant communities well. Populus, Rosaceae, Saxifranaceae, Gramineae, Leguminosae, Compositae, Caprifoliaceae etc. can not be used as significant indicators to the plants.The study on the relation of pollen percentages with plant covers shows that Pinus pollen percentages are more than 30% where pine trees exist in the surrounding region. The Picea+Abies pollen percentages are higher than 20% where the Picea+Abies trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Larix pollen percentages vary from 5% to 20% where the Larix trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Betula pollen percentages are higher than 40% where the Betula trees are dominant in the communities" but less than 5% where the parent plants are sparse or absent. Quercus pollen percentages are higher than 10% where the Quercus trees are dominant in the communities, but less than 1% where the parent plants sparse or absent. Carpinus pollen percentages vary from 5% to 15% where the Carpinus trees are dominant in the communities, but less than 1% where the parent plants are sparse or absent. Populus pollen percentages are about 0-5% at pure Populus communities, but cannot be recorded easily where the Populus plants mixed with other trees in the communities. Juglans pollen accounts for 25% to 35% in the forest of Juglans mandshurica, but less than 1% where the parent plants are sparse or absent. Pterocelis pollen percentages are less than 15% where the Pterocelis trees are dominant in the communities, but cannot be recorded easily where the parent plants are sparse or absent. Ulmus pollen percentages are more than 8% at Ulmus communities, but less than 1% where the Ulmus plants mixed with other trees in the communities. Vitex pollen percentages increase along with increasing of parent plant covers, but the maximum values are less than 10 %. Caragana pollen percentages are less than 20 % where the Caragana plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent. Spiraea pollen percentages are less than 16 % where the Spiraea plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent.The study on the relation of surface pollen assemblages with the modern climate shows that, in the axis 1 of DCA, surface samples scores have significant correlation with the average annual precipitations, and the highest determination coefficient (R2) is 0.8 for the fitting result of the third degree polynomial functions. In the axis 2 of DCA, the samples scores have significant correlation with the average annual temperatures, average July temperatures and average January temperatures, and the determination coefficient falls in 0.13-0.29 for the fitting result of the third degree polynomial functions with the highest determination coefficient for the average July temperature.The sensitivity of the different pollen taxa to climate change shows that some pollen taxa such as Pinus, Quercus, Carpinus, Juglans, Spiraea, Oleaceae, Gramineae, Tamariaceae and Ephedra are only sensitive to the change in precipitation.