134 resultados para Cleavage fracture
Resumo:
Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.
Resumo:
The instability of the crack tip in brittle Mg-based bulk metallic glass (BMG) is studied. The formation of various fractographic surfaces of the BMG is associated with the instability of the fluid meniscus, which is due to viscous fluid matter being present on the fracture process zone. Depending on the values of the wavelength of the initial perturbation of the fluid meniscus and the local stress intensity factor, different fracture surface profiles, i.e. a dimple-like structure, a periodic corrugation pattern and a pure mirror zone are formed. The fractographic evolution is significantly affected by the applied stress. A decreased fracture Surface roughness is observed under a low applied stress. An increased fracture surface roughness, which has frequently been reported by other researchers, is also observed in the present studies under a high applied stress. Unique fractographic features are attributed to the non-linear hyperelastic stiffening for less softening) mechanism. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Lattice-type model can simulate in a straightforward manner heterogeneous brittle media. Mohr-Coulomb failure criterion has recently been involved into the generalized beam (GB) lattice model, and as a result, numerical experiments on concrete under various loading conditions can be conducted. The GB lattice model is further used to investigate the reinforced fiber/particle composites instead of only particle composites as the model did before. Numerical examples are given to show the effectiveness of the modeling procedure, and influences of inclusions (particle, fiber and rebar) on the fracture processes are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effective elastic modulus and fracture toughness of the nanofilm were derived with the surface relaxation and the surface energy taken into consideration by means of the interatomic potential of an ideal crystal. The size effects of the effective elastic modulus and fracture toughness were discussed when the thickness of the nanofilm was reduced. And the dependence of the size effects on the surface relaxation and surface energy was also analyzed.
Fracture Mechanisms And Size Effects Of Brittle Metallic Foams: In Situ Compression Tests Inside Sem
Resumo:
In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.
Resumo:
Crack propagation and strain field evolution in two metallic glassy ribbons are studied using in situ scanning electron microscopy and the white digital speckle correlation method. Strain state at the crack tip, which depends heavily on the fracture toughness, plays a key role in fracture. A high degree of shear strain concentration in tough glassy ribbon can satisfy the critical shear strain, resulting in shear fracture, whereas a high degree of linear strain concentration in brittle glassy ribbon can initiate normal tensile fracture. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.
Resumo:
This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report an unusual transition from a locally ductile to a pure brittle fracture in the dynamic fracture of brittle Mg65Cu20Gd10 bulk metallic glass. The fractographic evolution from a dimple structure to a periodic corrugation pattern and then to the mirror zone along the crack propagation direction during the dynamic fracture process is discussed within the framework of the meniscus instability of the fracture process zone. This work might provide an important clue in understanding of the energy dissipation mechanism for dynamic crack propagation in brittle glassy materials. (C) 2008 American Institute of Physics.
Resumo:
We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs. (C) 2008 American Institute of Physics.
Resumo:
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
Resumo:
A general analytical model for a composite with an isotropic matrix and two populations of spherical inclusions is proposed. The method is based on the second order moment of stress for evaluating the homogenised effective stress in the matrix and on the secant moduli concept for the plastic deformation. With Webull's statistical law for the strength of SiCp particles, the model can quantitatively predict the influence of particle fracture on the mechanical properties of PMMCs. Application of the proposed model to the particle cluster shows that the particle cluster has neglected influence on the strain and stress curves of the composite. (C) 1998 Elsevier Science B.V.
Resumo:
The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO) to the Weibull and normal distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the difference is not large enough to make a clear distinction between the two distributions. There is not sufficient evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use of the Weibull distribution for strength data is questioned.
Resumo:
Concrete is usually described as a three-phase material, where matrix, aggregate and interface zones are distinguished. The beam lattice model has been applied widely by many investigators to simulate fracture processes in concrete. Due to the extremely large computational effort, however, the beam lattice model faces practical difficulties. In our investigation, a new lattice called generalized beam (GB) lattice is developed to reduce computational effort. Numerical experiments conducted on a panel subjected to uniaxial tension show that the GB lattice model can reproduce the load-displacement curves and crack patterns in agreement to what are observed in tests. Moreover, the effects of the particle overlay on the fracture process are discussed in detail. (C) 2007 Elsevier Ltd. All rights reserved.