60 resultados para Chlorophyll a concentration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er2O3-doped TeO2-ZnO-La2O3 modified tellurite glasses were prepared by the conventional melt-quenching method, and the Er3+ : I-4(13/2) -> I-4(15/2) fluorescence properties have been studied for different Er3+ concentrations. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. Based on the electric dipole-dipole interaction theory, the interaction parameter, C-Er,(Er), for the migration rate of Er3+ : I-4(13/2) -> I-4(13/2) in modified tellurite glass was calculated. Finally, the concentration quenching mechanism using a model based on energy transfer and quenching by hydroxyl (OH-) groups was presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral properties in different concentration of Yb ions (0.5-5 mol%)-doped silica glasses are explored in this paper. The glasses are prepared by traditional melting method. The absorption spectra and the fluorescent lifetime (tau(f)) are measured at room temperature and low temperature (18 K). The stimulated cross-section (sigma(emi)) and potential laser properties (beta(min), I-sat, I-min) are calculated based on the absorption spectra. The absorption cross-section (sigma(abs)) are in the range 1.08 x 10(-20) - 1.18 x 10(-20) cm(2) in different glasses, the fluorescence lifetime (tau(f)) change from 1.9 to 1.2 ms with the increase of Yb3+ concentration. The potential laser properties indicate that lead silica glass is a good host for highly Yb ion doping glass. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is about the first reported laser glass with very low no, high Er3+ concentration and no quenching. In this work, a series of high Er3+ concentration (10.6-12.2 x 10(20) ions/cm(3)), low refractive index (n(1550) < 1.47) and relatively high fluorescence lifetime (6.8-12.6 ms) fluorophosphate glasses were made. A cw-pumping evanescent wave optical amplifier experiment was performed with it, and a relative gain of around 2dB at 1550 nm wavelength was achieved while the noise level was almost unchanged. To our knowledge, this is the first successful relative gain in evanescent wave optical amplifiers (EWOA) demonstrated with cw pumping. It is a valuable study of specially designed fluorophosphate glass suitable for EWOA communication experiment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

0.5 at.% Yb:YAlO3(YAP), 5 at.% Yb:YAP and 15 at.% Yb:YAP were grown using the Czochralski method. Their absorption and fluorescence spectra were measured at room temperature and their emission line shape was calculated using the method of reciprocity. It was observed that the fluorescence spectra changed appreciably with the increasing of Yb concentration. For 0.5 at.% Yb:YAP, the line shape of fluorescence is very similar with the calculated emission line shape; with the increasing of Yb doping concentration, the line shape of fluorescence is very different from the calculated emission line shape. These phenomena are caused by the strong self-absorption at 979 and 999 nm for Yb:YAP. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yb:YAG single crystals with Yb doping concentration 5.4, 16.3, 27.1, 53.6, and 100 at.% were grown by the Czochralski process. The effects of Yb concentration on the absorption spectra (190-1 100nm), fluorescence spectra under 940nm and X-ray excitation were studied. The concentration quenching of fluorescence was observed when the Yb doping concentration reaches to as high as 27.1 at.% for Yb:YAG. Under 940 nm excitation, the influence of the self-absorption at 969 and 1029 nrn on the fluorescence spectra is not evident when the Yb doping concentration is as high as 27.1 at.%. However, it can greatly change the shape of fluorescence spectra of Yb:YAG when the Yb doping concentration reaches to above 53.6 at.%. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Zn0.95 - xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an auto-combustion method. X-ray diffraction measurements indicate that all Al-doped Zn0.95Ni0.05O samples have the pure wurtzite structure. Transmission electron microscope analyses show that the as-synthesized powders are of the size 40 - 45 nm. High-resolution transmission electron microscope, energy dispersive spectrometer and X-ray photoemission spectroscope analyses indicate that Ni2+ and Al3+ uniformly substitute Zn2+ in the wurtzite structure without forming any secondary phases. The Al doping concentration dependences of cell parameters (a and c), resistance and the ratio of green emission to UV emission have the similar trends. (c) 2007 Elsevier B.V. All rights reserved.