89 resultados para Cartilage graft
Resumo:
<正> 三、运动关节力学 运动关节(diarthrodial joint)的功能在于使动物能灵巧地运动肢体。译成力学术语就是:传递载荷,吸收冲击、振动,承受相当高的应力,且运动时摩擦系数很小。L.L.Malcom曾精细地测量过牛肱关节的摩擦系数,在正应力1—20kg/cm~2的范围内,动摩擦系数为0.0025—0.0040,而最好的工程材料的摩擦系数为0.01—0.05,整整差一个量级。
Resumo:
为了提高PET薄膜的表面亲水性,采用液相照射接枝一步法用XeCl准分子激光引发丙烯酰胺单体在PET薄膜上接枝。用水滴在薄膜表面形成的接触角表征处理后样品的亲水性,结果表明激光照射接枝可显著提高薄膜表面亲水性,激光剂量、单体溶液质量分数、光敏剂、均聚物抑制剂及溶液pH值都能影响接枝反应速率。
Resumo:
以陆地棉(Gossypium hirsutum L.)栽培品种新陆早4号、系550、冀资492、衡无89-30、邯93-2、冀资123等为材料,进行了组织培养及植株再生研究,建立了一套陆地棉体细胞植株再生速成体系。通过调整激素种类与比例以及改善培养条件,降低了畸形胚发生频率(从80%降为41%),并可将畸形苗转化为正常苗(转化率约为78%);通过水培和嫁接,结合试管扦插、扩繁技术,解决了棉花生根及移栽难题,为农杆菌介导法转化棉花奠定了基础。 用绿色荧光蛋白基因(gfp)作为报告基因,构建了pBGb1m(含Bt和gfp二价基因)、pBGbf(含Bt-gfp融合基因)和pBGbfg(含Bt-gfp融合基因和gna基因)等三种植物表达载体。通过农杆菌介导法转化烟草,转基因再生植株经过荧光、虫试、PCR、Southern blot和Western blot等检测,表明三种植物表达载体能够在转基因植物中有效表达,同时,绿色荧光蛋白(GFP)的检测表现出了简便、经济、快速、可靠等优点,为大量棉花转基因苗的检测提供了一种有效方法。 采用花粉管通道法将携带细胞间隙定位信号肽的Bt基因的pBin438-S1m质粒导入棉花品种冀资492,经过田间卡那霉素筛选、虫试、PCR、PCR-Southern blot和Southern blot检测,证明Bt基因已整合至棉花基因组中,而且可能是以单拷贝形式插入。 同时,通过农杆菌介导法将三种植物表达载体(pBGb1m、pBGbf和pBGbfg)转化陆地棉栽培品种新陆早4号、冀资492、衡无89-30和邯93-2等材料,获得了大量转化再生棉株。经过PCR和PCR-Southern blot检测,转基因阳性植株为转为再生植株总数的89.45%。目前,虫试、Southern blot及Western blot正在进行之中。
Resumo:
At present, acute vascular rejection (AVR) remains a primary obstacle inhibiting long-term graft survival in the pig-to-non-human primate transplant model. The present study was undertaken to determine whether repetitive injection of low dose Yunnan-cobra venom factor (Y-CVF), a potent complement inhibitor derived from the venom of Naja kaouthia can completely abrogate hemolytic complement activity and subsequently improve the results in a pig-to-rhesus monkey heterotopic heart transplant model. Nine adult rhesus monkeys received a heterotopic heart transplant from wild-type pigs and the recipients were allocated into two groups: group 1 (n = 4) received repetitive injection of low dose Y-CVF until the end of the study and group 2 (n = 5) did not receive Y-CVF. All recipients were treated with cyclosporine A (CsA), cyclophosphamide (CyP) and steroids. Repetitive Y-CVF treatment led to very dramatic fall in CH50 and serum C3 levels (CH50 < 3 units/C3 remained undetectable throughout the experiment) and successfully prevented hyperacute rejection (HAR), while three of five animals in group 2 underwent HAR. However, the continuous suppression of circulating complement did not prevent AVR and the grafts in group 1 survived from 8 to 13 days. Despite undetectable C3 in circulating blood, C3 deposition was present in these grafts. The venular thrombosis was the predominant histopathologic feature of AVR. We conclude that repetitive injection of low dose Y-CVF can be used to continuously suppress circulating complement in a very potent manner and successfully prevent HAR. However, this therapy did not inhibit complement deposition in the graft and failed to prevent AVR. These data suggest that using alternative pig donors [i.e. human decay accelerating factor (hDAF)-transgenic] in combination with the systemic use of complement inhibitors may be necessary to further control complement activation and improve survival in pig-to-non-human primate xenotransplant model.
Resumo:
In xenotransplantation, donor endothelium is the first target of immunological attack. Activation of the endothelial cell by preformed natural antibodies leads to platelet binding via the interaction of the glycoprotein (GP) Ib and von Willebrand factor (vWF). TMVA is a novel GPIb-binding protein purified from the venom of Trimeresurus mucrosquamatus. In this study, the inhibitory effect of TMVA on platelet aggregation in rats and the effect on discordant guinea pig-to-rat cardiac xenograft survival were investigated. Three doses (8, 20 or 40 mug/kg) of TMVA were infused intravenously to 30 rats respectively. Platelet aggregation rate was assayed 0.5, 12, and 24 h after TMVA administration. Wister rats underwent guinea pig cardiac cervical heterotopic transplantation using single dosing of TMVA (20 mug/kg, i.v., 0.5 h before reperfusion). Additionally, levels of TXB2 and 6-keto-PGF(1alpha) within rejected graft tissues were determined by radioimmunoassay. Treatment with TMVA at a dose of 20 or 40 mug/kg resulted in complete inhibition of platelet aggregation 0.5 h after TMVA administration. Rats receiving guinea pig cardiac xenografts after TMVA therapy had significantly prolonged xenograft survival. Histologic and immunopathologic analysis of cardiac xenografts in TMVA treatment group showed no intragraft platelet microthrombi formation and fibrin deposition. Additionally, the ratio of 6-keto-PGF(1alpha) to TXB2 in TMVA treatment group was significantly higher than those in control group. We conclude that the use of this novel GPIb-binding protein was very effective in preventing platelet microthrombi formation and fibrin deposition in a guinea pig-to-rat model and resulted in prolongation of xenograft survival. The increased ratio of PGI(2)/TXA(2) in TMVA treatment group may protect xenografts from the endothelial cell activation and contribute to the prolongation of xenograft survival.
Resumo:
分别采用过硫酸钾和硝酸铈铵作引发剂,在大连氨气保护下,合成了聚乙烯聚-g-聚丙烯酸。通过用浓硝酸氧化聚乙烯醇主链的方法,分离接枝支链聚丙烯酸,用粘度法测定聚丙烯酸的分子量,计算出每百克聚乙烯醇中的接枝链数。比较了两种引发体系下所得接枝产物结构上的差异。发现用硝酸铈铵作引发剂时,尽管每百克聚乙烯醇上接枝支链数远大于用过硫酸钾作引发剂时所得产物中的接枝支链数,但由于硝酸铈铵作引发剂时,能引起主链断裂,所得产物主要是主链断裂产生自由基形成的嵌段型产物,而过硫酸钾作引发剂时,不引起主链断裂,形成的是真正接枝型产物。另外,两种引发体系下所得支链聚丙烯酸的分子量有明显差异。
Resumo:
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.
Resumo:
In the present work, two kinds of CPVC carboxylated ionic copolymers were prepared by a new method. First, a graft copolymer (CPVC-cg-AA) comprising of polyacrylic acid (PAA) as branched chains and chlorinated polyvinyl chloride (CPVC) as backbone was synthesized by in-situ chlorinating graft copolymerization (ISCGC). Second, the acid groups of the graft copolymer were neutralized by sodium hydroxide and aluminium hydroxide, respectively in order to prepare carboxylated ionic copolymers.
Resumo:
In this paper, the modification of polypropylene (PP) with acrylic acid (AA) by reactive extrusion using pre-irradiated PP (rPP) as initiator was investigated. It was found the relatively high graft degree (Gd) and slight degradation of modified PP was obtained when 20 wt% rPP was used. This result can be explained in terms of effective concentration of free radicals.
Resumo:
Two sets of graft copolymers were prepared by grafting glycidyl methacrylate (GMA) or ally] (3-isocyanate-4-tolyl) carbamate (TAI) onto ethylene/propylene/diene terpolymer (EPDM) in an internal mixer. These graft copolymers were used as the compatibilizer to prepare the thermoplastic elastomers (TPEs) containing 50 wt%, of poly(butylene terephthalate), PBT, 30 wt% of compatibilizer, and 20 wt% of nitrile-butadiene rubber, NBR. The indirect, two-step mixer process was chosen for dynamic curing.
Resumo:
The phase behaviors of comblike block copolymer A(m+1)B(m)/homopolymer A mixtures are studied by using the random phase approximation method and real-space self-consistent field theory. From the spinodals of macrophase separation and microphase separation, we can find that the number of graft and the length of the homopolymer A have great effects on the phase behavior of the blend. For a given composition of comblike block copolymer, increasing the number of graft does not change the macrophase separation spinodal curve but decreases the microphase separation region. The addition of a small quantity of long-chain homopolymer A increases the microphase separation of comblike block copolymer/homopolymer A mixture.
Resumo:
This paper presented a new approach for preparing a new type of slow-release membrane-encapsulated urea fertilizer with starch-g-PLLA as biodegradable carrier materials. By solution-casting and washing rapidly with water the urea was individually encapsulated within the starch matrix modified by L-lactide through in situ graft-copolymerization.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymer systems, the micro-phase morphologies of the H-shaped (AC)B(CA) ternary block copolymer system are studied in three-dimensional (3D) space. By systematically varying the volume fractions of the components A, B, and C, six triangle phase diagrams of this H-shaped (AC)B(CA) ternary block copolymer system with equal interaction energies among the three components are constructed from the weaker segregation regime to the strong segregation regime, In this study, thirteen 3D micro-phase morphologies for this H-shaped ternary block copolymer system are identified to be stable and seven 3D microphase morphologies are found to be metastable.
Preparation and characterization of poly (N-isopropylacrylamide)/polyvinylamine core-shell microgels
Resumo:
In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N'-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and H-1-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm.