32 resultados para Capacity of Innovation
Resumo:
The heat capacity (C-p) of nanocrystalline nickel (nc-Ni, 40 mn crystallite size) has been measured over the temperature range of 78-370 K with a high-resolution automated adiabatic calorimeter. The measured results are compared with the C-p values of the corresponding coarse-grained crystal, and an enhancement of heat capacity of the nanocrystalline nickel was observed to be 2-4% in the temperature range between 100 and 370 K. The thermal stability of the nanocrystalline nickel sample was determined by a differential scanning calorimeter and a thermogravimetric system. The melting point of nc-Ni is the same as that of the corresponding coarse-grained crystalline nickel and the sample is stable at temperature lower than 500 K. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The heat capacity of nanostructured amorphous SiO2 (na-SiO2) has been measured by adiabatic calorimetric method over the temperature range 9-354 K. TG and differential scanning calorimeter (DSC) were also employed to determine the thermal stability. Glass transition temperature (T-g) for the two same grain sizes with different specific surface of naSiO(2) samples and one coarse-grained amorphous SiO2 (ca-SiO2) sample were determined to be 1377, 1397 and 1320 K, respectively. The low temperature experimental results show that there are significant heat capacity (C-P) enhancements among na-SiO2 samples and ca-SiO2. Entropy, enthalpy, Gibbs free energy and Debye temperature (theta (D)) were obtained based on the low temperature heat capacity measurement of na-SiO2. The Cp enhancements of na-SiO2 were discussed in terms of configurational and vibrational entropy. (C) 2001 Elsevier Science B.V. All rights reserved.