93 resultados para Calculated, eddy covariance method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used an eddy covariance technique to measure evapotranspiration and carbon flux over two very different growing seasons for a typical steppe on the Inner Mongolia Plateau, China. The rainfall during the 2004 growing season (344.7 mm) was close to the annual average (350.43 mm). In contrast, precipitation during the 2005 growing season was significantly lower than average (only 126 mm). The wet 2004 growing season had a higher peak evapotranspiration (4 mm day(-1)) than did the dry 2005 growing season (3.3 mm day(-1)). In 2004, latent heat flux was mainly a consumption resource for net radiation, accounting for similar to 46% of net radiation. However, sensible heat flux dominated the energy budget over the whole growing season in 2005, accounting for 60% of net radiation. The evaporative rate (LE/R-n) dropped by a factor of four from the non-soil stress to soil water limiting conditions. Maximum half-hourly CO2 uptake was -0.68 mg m(-2) s(-1) and maximum ecosystem exchange was 4.3 g CO2 m(-2) day(-1) in 2004. The 2005 drought growing stage had a maximum CO2 exchange value of only -0.22 mg m(-2) s(-1) and a continuous positive integrated-daily CO2 flux over the entire growing season, i.e. the ecosystem became a net carbon source. Soil respiration was temperature dependent when the soil was under non-limiting soil moisture conditions, but this response declined with soil water stress. Water availability and a high vapor pressure deficit severely limited carbon fixing of this ecosystem; thus, during the growing season, the capacity to fix CO2 was closely related to both timing and frequency of rainfall events. (c) 2007 Published by Elsevier Masson SAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpine meadow ecosystem on the Qinghai-Tibetan Plateau is characterized by low temperatures because of its high elevation. The low-temperature environment may limit both ecosystem photosynthetic CO2 uptake and ecosystem respiration, and thus affect the net ecosystem CO2 exchange (NEE). We clarified the low-temperature constraint on photosynthesis and respiration in an alpine meadow ecosystem on the northern edge of the plateau using flux measurements obtained by the eddy covariance technique in two growing seasons. When we compared NEE during the two periods, during which the leaf area index and other environmental parameters were similar but the mean temperature differed, we found that NEE from 9 August to 10 September 2001, when the average temperature was low, was greater than that during the same period in 2002, when the average temperature was high, but the ecosystem gross primary production was similar during the two periods. Further analysis showed that ecosystem respiration was significantly higher in 2002 than in 2001 during the study period, as estimated from the relationship between temperature and nighttime ecosystem respiration. The results suggest that low temperature controlled the NEE mainly through its influence on ecosystem respiration. The annual NEE, estimated from 15 January 2002 to 14 January 2003, was about 290 g CO2 m(-2) year(-1). The optimum temperature for ecosystem NEE under light-saturated conditions was estimated to be around 15 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification of areal evapotranspiration from remote sensing data requires the determination of surface energy balance components with support of field observations. Much attention should be given to spatial resolution sensitivity to the physics of surface heterogeneity. Using the Priestley-Taylor model, we generated evapotranspiration maps at several spatial resolutions for a heterogeneous area at Haibei, and validated the evapotranspiration maps with the flux tower data. The results suggested that the mean values for all evapotranspiration maps were quite similar but their standard deviations decreased with the coarsening of spatial resolution. When the resolution transcended about 480 m, the standard deviations drastically decreased, indicating a loss of spatial structure information of the original resolution evapotranspiration map. The absolute values of relative errors of the points for evapotranspiration maps showed a fluctuant trend as spatial resolution of input parameter data layers coarsening, and the absolute value of relative errors reached minimum when pixel size of map matched up to measuring scale of eddy covariance system. Finally, based on the analyses of the semi-variogram of the original resolution evapotranspiration map and the shapes of spatial autocorrelation indices of Moran and Geary for evapotranspiration maps at different resolutions, an appropriate resolution was suggested for the areal evapotranspiration simulation in this study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2 flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2 uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00. Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1,19, 1.46 and 0.67 g CO2 m(-2) h(-1) for June, July, August and September, respectively. Diurnal fluctuation Of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m(-2). The total CO2 uptake by the ecosystem was up to 583 g CO2 m(-2) for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m(-2) h(-1) in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 eff lux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 eff lux appeared in April, with a value of 105 g CO2 m(-2). The total net CO2 eff lux for the whole non-growing season was 356 g CO2 m(-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To reveal the potential contribution of grassland ecosystems to climate change, we examined the energy exchange over an alpine Kobresia meadow on the northeastern Qinghai-Tibetan Plateau. The annual pattern of energy exchange showed a clear distinction between periods of frozen soil with the daily mean soil temperature at 5 cm (T-s5 ≤ 0 ° C) and non-frozen soil (T-s5 > 0 ° C). More than 80% of net radiation was converted to sensible heat (H) during the frozen soil period, but H varied considerably with the change in vegetation during the non-frozen soil period. Three different sub-periods were further distinguished for the later period: (1) the pre-growth period with Bowen ratio (β) > 1 was characterized by a high β of 3.0 in average and the rapid increase of net radiation associated with the increases of H, latent heat (LE) and soil heat; (2) during the Growth period when β ≤ 1, the LE was high but H fluxes was low with β changing between 0.3 and 0.4; (3) the post-growth period with average β of 3.6 when H increased again and reached a second maximum around early October. The seasonal pattern suggests that the phenology of the vegetation and the soil water content were the major factors affecting the energy partitioning in the alpine meadow ecosystem. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文以青藏高原东北部海北地区高寒灌丛(Alpine Shrub)生态系统为研究对象,利用微气象观测系统及涡度相关(Eddy Covariance)技术,自2003年1月1日至2005年12月31日对该类广布于青藏高原的典型高寒草地类型进行长期连续观测。在对生态系统CO2净交换(NEE)以及群落叶面积指数(LAI)、生物量等生物学指标和光合有效辐射(PAR)、温度、土壤水分、脉冲性降水事件等主要环境因子进行连续监测的基础上,重点分析和探讨了海北地区高寒灌丛生态系统净生态系统CO2交换(NEE)在时、日、月及年际尺度上的变化模式,生长季与非生长季高寒灌丛生态系统CO2净交换特征,高寒灌丛生态系统大气CO2源/汇年际差异,土壤温度、昼夜温差、光合有效辐射、脉冲性降水事件等主要环境因子影响。从而,揭示了不同时间尺度下的高寒灌丛生态系统NEE变化规律,阐明主要环境因子对生态系统NEE的影响,明确了该生态系统大气CO2源/汇状况及其季节分布模式;同时,也为青藏高原区域尺度的高寒草地生态系统CO2通量研究和碳收支的估算提供科学依据和基础数据,对进一步揭示我国乃至亚洲陆地生态系统的碳收支状况有着重要意义。主要研究结果概括为以下几个方面: 1、海北地区高寒灌丛生态系统净生态系统CO2交换时动态特征存在很大的季节性差异,暖季小时NEE变化振幅大,CO2净吸收的极值一般出现在午间,最大吸收量为1.7 g CO2 m-2 h-1左右。夜间为CO2净释放,净生态系统交换值较为稳定(0.5~ 0.9 g CO2 m-2 h-1);冷季日变化振幅极小,除14:00~18:00时一定量CO2释放外,其余时段通量均很小。 2、从日平均净生态系统CO2交换来看,6~9月日平均NEE一般为负值(CO2净吸收),2003~2005年6~9 月间日平均NEE分别为-5.65 g CO2 m-2 d-1、-6.08 g CO2 m-2 d-1和-4.81 g CO2 m-2 d-1;而10~12月及翌年1~5月期间日平均NEE通常为正值(CO2净释放),该时段3年高寒灌丛日平均净生态系统CO2交换分别为1.91 g CO2 m-2 d-1、1.90 g CO2 m-2 d-1和2.19 g CO2 m-2 d-1。2003~2004年高寒灌丛生态系统CO2净释放维持天数分别为249 d、 254 d和264 d,2003年净释放维持天数最少,而净吸收维持天数2005年最少(101d)。2003、2004和2005年全年日平均CO2净吸收分别为0.611 g CO2 m-2 d-1、0.759 g CO2 m-2 d-1和0.167 g CO2 m-2 d-1。 3、就季节差异而言,2003、2004和2005年整个生长季节高寒灌丛平均CO2日净生态系统交换分别为-3.99 g CO2 m-2 d-1、-4.59 g CO2 m-2 d-1、-3.27 g CO2 m-2 d-1。7、8月生长季节CO2净吸收的最高,2003、2004、2005年7月和8月份高寒灌丛生态系统CO2净吸收分别为222 g CO2 m-2 和224 g CO2 m-2、355 g CO2 m-2和216 g CO2 m-2、263 g CO2 m-2和186 g CO2 m-2。在相对短暂的生长季节海北地区高寒灌丛生态系统表现出显著的大气CO2净吸收能力,2003、2004和2005年生长季节高寒灌丛生态系统CO2净吸收量分别为610 g CO2 m-2、701 g CO2 m-2和500 g CO2 m-2。相对于温度等环境因子,高寒灌丛生态系统生长季白昼NEE小时变化规律更受光合有效辐射变化的影响。 4、2003~2005年非生长季节日平均NEE分别为1.83 g CO2 m-2、2.01 g CO2 m-2和2.07 g CO2 m-2。4月和10月是非生长季节CO2净释放的最高月份,2003、2004和2005年全月净释放量为105 g CO2 m-2和77 g CO2 m-2、105 g CO2 m-2和117 g CO2 m-2及105 g CO2 m-2和138 g CO2 m-2,2003~2005年整个非生长季CO2净释放分别为CO2为388 g CO2 m-2、425 g CO2 m-2和439 g CO2 m-2。非生长季节海北地区高寒灌丛生态系统NEE小时变化与5 cm土壤温度存在极显著的正相关关联,表明在非生长季节土壤温度是影响青藏高原高寒灌丛生态系统NEE的重要环境因子。 5、从生态系统CO2源/汇特征来看,海北地区高寒灌丛生态系统2003、2004和2005年全年净CO2固定总量分别为223 g CO2 m-2 a-1、277 g CO2 m-2 a-1和61 g CO2 m-2 a-1,3年平均CO2值为187 g CO2 m-2 a-1。在为期3年的研究时段海北地区高寒灌丛生态系统表现为弱的大气二氧化碳的汇。 6、高寒灌丛群落表观光合量子产额(a)和表观最大光合速率(Pmax)受叶面积指数的影响。在6~9月份期间,由于LAI的不同,a和Pmax值差异明显,7、8月份较高而6月和9月明显较低。海北地区高寒灌丛生态系统a和Pmax值高于西藏当雄地区高寒草甸生态系统,但低于平原地区相关生态系统。 维持天数2005年最少(101d)。2003、2004和2005年全年日平均CO2净吸收分别为0.611 g CO2 m-2 d-1、0.759 g CO2 m-2 d-1和0.167 g CO2 m-2 d-1。 3、就季节差异而言,2003、2004和2005年整个生长季节高寒灌丛平均CO2日净生态系统交换分别为-3.99 g CO2 m-2 d-1、-4.59 g CO2 m-2 d-1、-3.27 g CO2 m-2 d-1。7、8月生长季节CO2净吸收的最高,2003、2004、2005年7月和8月份高寒灌丛生态系统CO2净吸收分别为222 g CO2 m-2 和224 g CO2 m-2、355 g CO2 m-2和216 g CO2 m-2、263 g CO2 m-2和186 g CO2 m-2。在相对短暂的生长季节海北地区高寒灌丛生态系统表现出显著的大气CO2净吸收能力,2003、2004和2005年生长季节高寒灌丛生态系统CO2净吸收量分别为610 g CO2 m-2、701 g CO2 m-2和500 g CO2 m-2。相对于温度等环境因子,高寒灌丛生态系统生长季白昼NEE小时变化规律更受光合有效辐射变化的影响。 4、2003~2005年非生长季节日平均NEE分别为1.83 g CO2 m-2、2.01 g CO2 m-2和2.07 g CO2 m-2。4月和10月是非生长季节CO2净释放的最高月份,2003、2004和2005年全月净释放量为105 g CO2 m-2和77 g CO2 m-2、105 g CO2 m-2和117 g CO2 m-2及105 g CO2 m-2和138 g CO2 m-2,2003~2005年整个非生长季CO2净释放分别为CO2为388 g CO2 m-2、425 g CO2 m-2和439 g CO2 m-2。非生长季节海北地区高寒灌丛生态系统NEE小时变化与5 cm土壤温度存在极显著的正相关关联,表明在非生长季节土壤温度是影响青藏高原高寒灌丛生态系统NEE的重要环境因子。 5、从生态系统CO2源/汇特征来看,海北地区高寒灌丛生态系统2003、2004和2005年全年净CO2固定总量分别为223 g CO2 m-2 a-1、277 g CO2 m-2 a-1和61 g CO2 m-2 a-1,3年平均CO2值为187 g CO2 m-2 a-1。在为期3年的研究时段海北地区高寒灌丛生态系统表现为弱的大气二氧化碳的汇。 6、高寒灌丛群落表观光合量子产额(a)和表观最大光合速率(Pmax)受叶面积指数的影响。在6~9月份期间,由于LAI的不同,a和Pmax值差异明显,7、8月份较高而6月和9月明显较低。海北地区高寒灌丛生态系统a和Pmax值高于西藏当雄地区高寒草甸生态系统,但低于平原地区相关生态系统。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive homogenous time-resolved fluoroimmunoassay (TR-FIA) method for bensulfuron-methyl (BSM) based on fluorescence resonance energy transfer (FRET) from a Tb3+ fluorescent chelate with N,N,N',N'-[2,6-bis(3'-aminomethyl-1'-pyrazoly)-4-phenylpyridine] tetrakis(acetic acid) (BPTA-Tb3+) to organic dye, Cy3 or Cy3.5 has been developed. New method combined the use of BPTA-Tb3+ labeled streptavidin, Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody and biotinylated BSM-BSA conjugate (BSA is bovine serum albumin) for competitive-type immunoassay. After BPTA-Tb3+ labeled streptavidin was reacted with a competitive immune reaction solution containing biotinylated BSM-BSA, BSM sample and Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody, the sensitized and long-lived emission of Cy3 or Cy3.5 derived from FRET was measured, and thus the concentration of BSM in sample was calculated. The present method has the advantages of rapidity, simplicity and high sensitivity since the B/F (bound reagent/free reagent) separation steps and the solid-phase carrier are not necessary. The method gives the detection limit of 2.10 ng ml(-1). The coefficient variations of the method are less than 1.5% and the recoveries are in the range of 95-105% for BSM water sample measurement. (C) 2001 Elsevier Science B.V. All rights reserved.