31 resultados para Bronchodilator Agents
Resumo:
In this study, a novel sol-gel method is used to synthesize amorphous silica-alumina materials with a narrow mesoporous distribution and various Si/Al molar ratios without using any templates and pore-regulating agents. During the preparation procedure, only inexpensive inorganic salts were used as raw materials, instead of expensive and harmful alkoxides. The precursor sol was dried at room temperature in a vacuum box kept at 60 mmHg until it began to form the gel. The results of a nitrogen sorption experiment indicate that the synthesized materials with different Si/Al molar ratios have similar mesoporous distributions (within 2-12 nm). Moreover, it was found that the material's pore size distribution remains at a similar value during the heat treatment from room temperature to 550 degreesC. On the basis of the nitrogen sorption, TEM, and AFM characterization results, a formation mechanism of mesopores which accounts for the experimental data is also suggested. This suggested mechanism involves rearrangement of the primary particles during the drying process to form the precursors of the similarly sized mesopores. The synthesized materials were characterized by XRD, thermal analysis (TG/DTA), Al-27 and Si-29 MAS NMR spectroscopy, SEM, TEM, and AFM. The results of Al-27 and 29Si MAS NMR indicate that the distribution of silicon and aluminum in the synthesized materials is more uniform and homogeneous than that in the mixed oxides prepared via the traditional sol-gel method even at high alumina contents. The type and density of the acid sites were studied using pyridine adsorption-desorption FTIR spectroscopy. It was shown that the acidity of the synthesized materials is higher than that of the silica-alumina materials prepared by conventional methods.