71 resultados para Bond Ground-states


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep Level Transient Spectroscopy (DLTS) has been applied to investigate the electronic properties of self-organized InAs quantum dots. The energies of electronic ground states of 2.5ML and 1.7ML InAs quantum dots (QDs) with respect to the conduction band of bulk GaAs are about 0.21 eV and 0.09 eV, respectively. We have found that QDs capture electrons by lattice relaxation through a multi-phonon emission process. The samples are QDs embedded in superlattices with or without a 500 Angstrom GaAs spacing layer between every ten periods of a couple of GaAs and InAs layers. The result shows that the density of dislocations in the samples with spacer layers is much lower than in the samples without the spacer layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep Level Transient Spectroscopy (DLTS) has been applied to investigate the electronic properties of self-organized InAs quantum dots. The energies of electronic ground states of 2.5ML and 1.7ML InAs quantum dots (QDs) with respect to the conduction band of bulk GaAs are about 0.21 eV and 0.09 eV, respectively. We have found that QDs capture electrons by lattice relaxation through a multi-phonon emission process. The samples are QDs embedded in superlattices with or without a 500 Angstrom GaAs spacing layer between every ten periods of a couple of GaAs and InAs layers. The result shows that the density of dislocations in the samples with spacer layers is much lower than in the samples without the spacer layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Excitation energies and electron impact excitation strengths from the ground states of Ni-, Cu- and Zn-like Au ions are calculated. The collision strengths are computed by a 213-levels expansion for the Ni- like Au ion, 405-levels expansion for the Cu-like Au ion and 229-levels expansion for the Zn-like Au ion. Configuration interactions are taken into account for all levels included. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbits are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. Excellent agreement is found when the results are compared with previous calculations and recent measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There can be found some notable discrepancies with regard to the resonance structures when R-matrix calculations from the Opacity Project and other sources are compared with recent absolute experimental measurements of Bizau et al [Astron. Astrophts. 439 387 (2005)] for B-like ions N2+, O3+ and F4+. We performed close-coupling calculations based on the R-matrix formalism for the photoionizations of ions mentioned above both for the ground states and first excited states in the near threshold regions. The present results are compared with experimental ones given by Bizau et al and earlier theoretical ones. Excellent agreement is obtained between our theoretical results and the experimental photoionization cross sections. The present calculations show a significant improvement over the previous theoretical results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Possible structures for Al2W and AlW2 clusters and their anions were presented and studied by use of density functional theory B3LYP at various spin multiplicities. The proposed three structures are triangular form with C-2v symmetry; linear structure with D (infinity h) symmetry; and linear structure with C (infinity v) symmetry. The calculated results indicate that structures with C-2v symmetry are the most stable for both neutral clusters and their anions. For Al2W, C-2v Symmetry at spin multiplicity 5 is the ground state, while for its anion, doublet is the lowest. For AlW2 and its anion, doublet and triplet are the ground states, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sequentially spectrophotometric titrations by sodium hydroxide of meso-tetraphenylporphyrin derivatives bearing one, two, three, or four p-hydroxyl groups result in new types of spectra. The strong new bands appear in the visible region with splitting or broadening of the Soret band and its significant loss of oscillator strength. To understand the molecular origin of these phenomena, the Resonance Raman (RR) and Fourier Transform Infrared (FTIR) experiments are carried out. The results demonstrate that the charges of the deprotonated para-hydroxy substituted meso-tetraphenylporphyrins are localized on the substituents, not delocalized into the pi system of the porphyrin macrocycles and that the ground states of the macrocycles remain essentially unperturbed. Both the related behavior of diprotonated tetrakis(p-(dimethylamino)phenyl) porphyrin and protonated Schiff base porphyrins show that the new bands considered as hyperporphyrin spectra are due to pi(phenoxide anion) --> pi*(porphyrin) transitions, where pi is an orbital on the phenoxide anion substitutent and pi* is a LUMO on the porphyrin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The singlet-triplet splitting energy gap DeltaE(S.T) = E-S - E-T is calculated for the ortho-, meta-, and para-xylylenes and their heteroatomic analogous by means of AM1-CI approach. It is shown that when the radical centers R-.(R-.=H2C.-,H2N.+- or HN.-) are twisted sufficiently Tar out of conjugation with the benzene ring, DeltaE(S.T) tends to zero or is negative, i.e, ortho-, meta-, and para-phenylenes turn into weak ferromagnetic or antiferromagnetic coupling unit, while they are strong ferromagnetic (meta-isomers) or antiferromagnetic (ortho-, para-isomers) coupling units under planar conformation. It is suggested that serious twisted conformation is not recommended candidate for the design of novel high-spin molecules with stable high-spin ground states by ortho- or para-phenylene coupling unit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel high spin tri-, tetra-, pentaradicals, composed of triazine coupling units and cationic amino radical spin centers (+ . NH) under various configurations and linkages, are predicted from AM1-CI calculations. It is found that for charged planar multiradicals the stability of high spin ground states depends on both the molecular configuration and the number of end groups. Generally, cyclic 1,3-bridged charged multiradicals (S less than or equal to 5/2) possess more stable high spin ground states than their isomers under the branched 1,3,5,-bridged configuration. Therefore, it is suggested that in the design of planar high spin molecules with stable high spin ground states, less end groups and all the supposed spin centers and/or the coupling units should be under the same structural situation. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LaCn+ (n = 2-8) have been studied using Hartree-Fock (HF) and B3LYP density functional method. The results indicated that at both levels, isomers with C-2v, C-s symmetry for n = 2, and edge insertion isomer for n = 4, 6, 8, as well as edge binding isomer for n = 3, 5, 7 were found as ground states. This is in good agreement with experimental results. The exceptional case is for n = 6 at B3LYP level, in which edge insertion and edge binding isomers were computed to be near isoenergetic. (C) 1997 Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two approximate formulae to calculate the eigenvalues of pure quadrupole interaction in Mossbauer effect studies have been proposed and the eigenvalue coefficients in the formulae have been given for various excited states and ground states of the nucleus with different spin. All the eigenvalues of pure quadrupole interaction between both excited state and ground state of nucleus with spin I = 3/2 divided-by 9/2 and the electric-field gradient with different asymmetry parameter (eta = 0 divided-by 1.0) have been calculated by these formulae. The results show that the accuracies in all the calculations are more satisfactory or same in comparison with those obtained by the formula of Shenoy and Dunlap, especially when the asymmetry parameter of electric-field gradient is larger than 0.8 for the nucleus with spin I = 5/2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure, mechanical properties and electronic structure of ground state BeH2 are calculated employing the first-principles methods based on the density functional theory. Our calculated structural parameters at equilibrium volume are well consistent with experimental results. Elastic constants, which well obey the mechanical stability criteria, are firstly theoretically acquired. The bulk modulus B, Shear modulus G, Young's modulus E, and Poisson's ratio upsilon are deduced from the elastic constants. The bonding nature in BeH2 is fully interpreted by combining characteristics in band structure, density of states, and charge distribution. The ionicity in the Be-H bond is mainly featured by charge transfer from Be 2s to H 1s atomic orbitals while its covalency is dominated by the hybridization of H 1s and Be 2p states. The Bader analysis of BeH2 and MgH2 are performed to describe the ionic/covalent character quantitatively and we find that about 1.61 (1.6) electrons transfer from each Be (Mg) atom to H atoms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Branching ratios and half-lives of alpha-decay to the ground-state rotational bands as well as the high-lying excited states of even-even nuclei have been calculated in the framework of the generalized liquid drop model (GLDM) and Royer's formula that we improved very recently. The calculation covers the isotopic chains from Ra to No in the mass regions 222 <= A <= 252 and 88 <= Z <= 102. The agreement between the calculated results and the experimental data indicates the reliability of investigating the properties of the unfavored alpha-decay with our method, especially the improved Royer's formula, which is very valuable for the analysis of experimental data. In addition, the dependence of half-lives on excitation energies of daughter nuclei has been investigated. It is shown that the influence on half-lives becomes stronger and stronger with the increase of the excitation energies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.