149 resultados para Bis-(3´-5´)-cyclic dimeric guanosine monophosphate
Resumo:
采用室内培养试验和盆栽试验相结合的方法,以春小麦和水稻为供试作物,初步探讨不同用量的3,5-二甲基吡唑(DMP)对土壤铵态氮硝化、作物产量及氮素利用的影响。结果表明,在本试验条件下,施用占尿素N量0.6%1~.0%的DMP(折合0.80~.9μg/g,干土),可显著抑制土壤硝化作用的进行,其抑制效应随抑制剂用量的增加逐渐增强。与对照单施尿素相比,施用1.0%DMP可使土壤NH4+-N含量提高30%以上,NO3--N含量降低20%左右。施用占尿素N量0.8%1~.0%的DMP对春小麦产量影响不大,但能显著提高水稻产量和两种作物的氮肥表观利用率,促进植株体内的氮素向子粒中的转移。与等量DCD(双氰胺)比较,DMP处理的水稻子粒粗蛋白含量和氮肥表观利用率显著提高,但产量差异不显著。
Resumo:
采用室内培养和田间试验相结合的方法,探讨了新型硝化抑制剂3,5-二甲基吡唑(DMP)对尿素氮转化及玉米田硝酸盐淋溶损失的影响.结果表明,DMP对尿素水解仅起短暂的抑制作用,但可在较长时间内显著抑制土壤铵的氧化,且随DMP用量的增加,抑制效应显著增强.培养第10 d时,DMP各处理(0.002 5、0.01及0.025 g/kg)的土壤NH4+-N累积量分别比CK提高了5.17、9.36和11.04倍,而NO3--N累积量于培养第14 d时差异最大,与CK相比分别降低了33.30%、61.19%和73.72%(p<0.01).土壤NO2--N只在尿素施用前期有少量累积,但第3 d DMP各处理土壤NO2--N含量降低幅度达95.77%~96.13%;土壤矿质氮总量于10 d以后,随DMP用量的增加,显著降低,而DMP1处理的土壤微生物量N在培养14~56 d期间显著提高.连续2 a的玉米田间试验原位取土测定结果表明,2004和2005年,DMP的施用使作物根系密集层以下(40~100 cm)土层的NO3--N累积总量分别比CK降低了28.77%和44.70%.因此,硝化抑制剂DMP与尿素配合施用是调控氮素转化、缓解氮肥污染的有效措施.
Resumo:
采用好气培养法,以双氰胺(DCD)为参比对象研究了新型吡唑类硝化抑制剂3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响.结果表明,DMPZP对土壤中的铵氧化作用有较强的抑制效果,在施用量为1.0%(纯N含量)时能显著提高土壤中的NH4+-N浓度,降低NO3--N浓度.DMPZP的硝化抑制效应随用量的增加而增强,相同质量的DMPZP的硝化抑制效果不及DCD,而DCD又不及2倍质量的DMPZP,但等摩尔数(物质量)的DMPZP硝化抑制效果明显优于DCD.DMPZP在施用后的第7天至第14天的硝化抑制作用最强,与不添加抑制剂的处理相比,DMPZP添加量为1.0%和2.0%(纯N含量)时的表观硝化率在第7天和第14天分别降低了29.3%、41.7%和18.6%、34.3%;在此期间,添加DMPZP处理的硝化抑制率均高于30%.DMPZP的施用还可减缓土壤pH的降低速率,但施用DMPZP和DCD对土壤pH的影响差异不显著.
Resumo:
The facile, rapid, and effective synthesis of coordination polymer La(1,3,5-BTC)(H2O)(6) has been realized via direct precipitation at room temperature. It is found that the crystal structure is of monoclinic, space group Cc. The doped Eu3+ or Tb3+ ions samples have the same phase and exhibit red and green emissions under UV light excitation, respectively.
Resumo:
Most nanofiltration (NF) membranes are composite and have a polyamide thin film prepared by interfacial polymerization. Their performances mainly correlate the structure of the thin film and monomers used for its preparation. In this work, a novel thin-film composite (TFC) nanofiltration membrane was successfully prepared from 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC) and piperazine (PIP) through interfacial polymerization. Attenuated reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) were used to characterize the chemical composition of the membrane surface. The membrane performance was optimized by studying preparation parameters including monomer concentration, reaction time, and pH of aqueous phase.
Resumo:
A series of chromium/Schiff base complexes N,N'-bis(salicylidene)-1,2-phenylenediamino chromium(III) X were prepared and employed for the alternating copolymerization of carbon dioxide with racemic propylene oxide in the presence of (4-dimethylamino)pyridine. The effect of the complex structure and reaction conditions on the catalytic activity, the poly(propylene carbonate)/cyclic carbonate (PPC/PC) selectivity, and the polymer head-to-tail linkages was examined. The experiments indicated that N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenediamino chromium(III) (NO3) exhibited the highest PPC/PC selectivity as well as polymer head-to-tail linkages and N,N'-bis(3,5-dichlorosalicylidene)-1,2-phenylenediimino chromiu(III) (NO3) possessed the highest catalytic activity among these chromium/Schiff base complexes. The structure of the produced copolymer was characterized by the IR, H-1 NMR, and C-13 NMR measurements.
Resumo:
in this Work, the suitability of 3,3',5,5'-tetramethylbenzidine sulfate (TMB) as the substrate of a DNAzyme catalytic system composed of a guanine-quadruplex DNA molecule and hemin was investigated. In the presence of H2O2, the hemin-DNA complex catalyzes the oxidation of TMB to produce two colored products, much like a peroxidase. The color-generating activity of this system could be influenced by several factors such as buffer type, pH value, DNA sequence, reaction time, and concentrations of both the hemin and H2O2. To illustrate the utility of this catalytic system, we designed a colorimetric assay, in which a synthetic oligonucleotide with a sequence complementary to the G-quadruplex DNA was used as the target. A detection limit of 1.86 nM was obtained. Our data have shown that TMB was an excellent colorimetric indicator that reported the peoxidase activities of the widely studied hemin-G-quadruplex DNAzyme system.
Resumo:
The large-scale synthesis of the metal-organic framework Eu(1,3,5-BTC)center dot 6H(2)O nanocrystallites with delicate morphologies such as sheaflike, butterflylike, and flowerlike superstructures composed of nanowires have been realized via a simple solution phase method at room temperature. Time-dependent experiments indicate that these superstructures were constructed by the splitting crystal growth mechanism, as has been noted in some minerals in nature. The synthetic parameters such as reaction time, concentration and molar ratio of reactants, surfactant, and reaction temperature all affected the morphology of the Eu(1,3,5-BTC)center dot 6H(2)O architectures. These well-arranged architectures exhibit red emission corresponding to the D-5(0) -> F-7(2) transition of the Eu3+ ions under UV light excitation, and the lifetime is determined to be about 0.22 ms.
Resumo:
Novel one-dimensional europium benzene-1,3,5-tricarboxylate compressed nanorods have been synthesized oil it large scale through direct precipitation in solution phase under moderate conditions without the assistance of any surfactant, catalyst, or template. The obtained nanorods have widths of about 50-100 not, thicknesses of 10-20 nm, and lengths ranging from a few hundred nanometers to several micrometers. X-ray powder diffraction. elemental analysis, Fourier transform infrared Studies, and thermogravimetric and differential thermal analysis show that the nanorods have the structural formula of Eu(1,3,5-BTC)center dot 6H(2)O. Upon UV excitation, these nanorods exhibit a highly efficient luminescence. which comes from the Eu3+ ions. Moreover, Eu2O3 nanorods Could also be obtained via a thermal decomposition method using the corresponding complex as a precursor. This synthetic route is promising for the preparation of other one-dimensional crystalline nanomaterials because of its simplicity and the low cost of the starting reagents.
Resumo:
A new process for the preparation of 3,5-dihydroxy-1-pentylbenzene, which is used as medicinal intermediate and raw material for the synthesis of HIV restrainer, is proposed in this paper. Technical 3,5-dimethoxybenzoic acid reacted with lithium hydride to form a salt (I) which acylated n-butyllithium directly to give 1-(3,5-dimethoxyphenyl)-1-pentanone (II) in 85.06% yield. Then (II) was reduced through a Wolff-K-Huangminglong reaction at 210 degrees C to give 3,5-dimethoxy-1-pentylbenzene (III). Finally, (III) refluxed with melt pyridine hydrochloride at 200 degrees C for 2 h to afford the target product 3,5-dihydroxy-1-pentylbenzene (IV). The total yield of (IV) amounted to 61.50% and its mass percentage was 98.22%. The products were characterized by means of IR, H-1-NMR, GC and HLPC-MS. The results indicated that this synthetic route was feasible, characterized by simple process and higher yield, and superior to the published ones.