201 resultados para Bilinear coupling
Resumo:
The characteristics of whispering-gallery modes (WGMs) in 3-D cylindrical, square, and triangular microcavities with vertical optical confinement of semiconductors are numerically investigated by the finite-difference time-domain (FDTD) technique. For a microcylinder with a vertical refractive index 3.17/3.4/3.17 and a center layer thickness 0.2 mu m, Q-factors of transverse electric (TE) WGMs around wavelength 1550 nm are smaller than 10(3), as the radius R < 4 mu m and reach the orders of 10(4) and 10(6) as R = 5 and 6 mu m, respectively. However, the Q-factor of transverse magnetic (TM) WGMs at wavelength 1.659 mu m reaches 7.5 x 10(5) as R = 1 mu m. The mode coupling between the WGMs and vertical radiation modes in the cladding layer results in vertical radiation loss for the WGMs. In the microcylinder, the mode wavelength of TM WGM is larger than the cutoff wavelength of the vertical radiation mode with the same mode numbers, so TM WGMs cannot couple with the vertical radiation mode and have high Q-factor. In contrast, TE WGMs can couple with the corresponding vertical radiation mode in the 3-D microcylinder as R < 5 mu m. However, the mode wavelength of the TE WGM approaches (is larger than) the cutoff wavelength of the corresponding radiation modes at R = 5 mu m (6 mu m), so TE WGMs have high Q-factors in such microcylinders too. The results show that a critical lateral size is required for obtaining high, Q-factor TE WGMs in the 3-D microcylinder. For 3-D square and triangular microcavities, we also find that the Q-factor of TM WGM is larger than that of TE WGM.
Resumo:
Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended.
Resumo:
Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.
Resumo:
Finite difference time domain (FDTD) method is used for the simulation and analysis of electromagnetic field in the top coupling layer of GaAs/AlGaAs quantum well infrared photodetector (QWIP). Simulation results demonstrated the coupling efficiencies and distributions of electromagnetic (EM) field in a variety of 2D photonic crystal coupling layer structures. A photonic crystal structure for bi-color-QWIP is demonstrated with high coupling efficiency for two wavelengths.
Resumo:
The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.
Resumo:
Based on appropriate combination of different band-gap InGaAsP, a new edge-coupled two-terminal double heterojunction phototransistor (ECTT-DHPT) was designed and fabricated, which is double heterojunction, free-aluminium, and works under uni-travelling-carrier mode and optically gradual coupling mode. This device is fully compatible with monolithic micro-wave integrated circuits (MMIC) and heterojunction bipolar transistor (HBT) in material and process. The DC characteristics reveal that the new ECTT-DHPT can perform good optoelectronic mix operation and linear amplification operation by optically biased at two appropriate value respectively. Responsivity of more than 52 A/W and dark current of 70 nA (when V-EC = 1 V) were obtained.
Resumo:
The electronic structure and magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO have been investigated using first-principles methods. We show that the magnetic coupling between Gd or Nd ions in the nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic coupling between Gd ions can be enhanced by appropriate electron doping into ZnO Gd system and the room-temperature ferromagnetism can be achieved. However, for ZnO Nd system, the ferromagnetism between Nd ions can be enhanced by appropriate holes doping into the sample. The room-temperature ferromagnetism can also be achieved in the n-conducting ZnO Nd sample. Our calculated results are in good agreement with the conclusions of the recent experiments. The effect of native defects (V-Zn, V-O) on the ferromagnetism is also discussed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3176490]
Resumo:
We propose a silicon ring-based optical modulation method to perform chirp-free optical modulations. In this scheme, we locate the light to be modulated at the resonance of the ring and tune the coupling coefficient between the ring and the straight waveguide by using a push-pull coupling structure. The chirp-free phase modulation can be achieved by varying the coupling coefficient in a large range, which can modify the coupling condition of the ring such that the input light experiences an abrupt phase shift of pi at the output. If the coupling coefficient is adjusted in a small range such that the coupling condition of the ring is kept unchanged, only the intensity of the light will be modulated. This leads to chirp-free intensity modulation. Our simulations performed at 10 Gbits/s confirm the feasibility of the proposal. (C) 2009 Optical Society of America
Resumo:
Directional coupler can be constructed by putting multiple photonic crystal waveguides together. The propagation of the optical field entering this system symmetrically was analysed numerically according to self-imaging principle. On the basis of this structure, ultracompact multiway beam splitter was designed and the ones with three and four output channels were discussed in details as examples. By simply tuning the effective refractive index of two dielectric rods in the coupler symmetrically to induce the redistribution of the power of the optical field, uniform or free splitting can be achieved. Compared with the reported results, this way is simpler, more feasible and more efficient and has extensive practical value in future photonic integrated circuits.
Resumo:
We have studied the optical matching layers (OMLs) and external quantum efficiency in the evanescent coupling photodiodes (ECPDs) integrating a diluted waveguide as a fibre-to-waveguide coupler, by using the semi-vectorial beam propagation method (BPM). The physical basis of OML has been identified, thereby a general designing rule of OML is developed in such a kind of photodiode. In addition, the external quantum efficiency and the polarization sensitivity versus the absorption and coupling length are analysed. With an optical matching layer, the absorption medium with a length of 30 mu m could absorb 90% of the incident light at 1.55 mu m wavelength, thus the total absorption increases more than 7 times over that of the photodiode without any optical matching layer.
Resumo:
Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America
Resumo:
Surface plasmons(SPs) generated in nano metallic gratings on medium layer can greatly enhance the transmission field through the metallic gratings. The enhancement effect is achieved from lambda = 500 nm to near-infrared domain. The enhancement rate is about 110 % at the wavelength of about 6 10 nm and about 180 % at lambda = 700 nm and 740 nm where most kinds of thin film solar cells have a high spectral response. These structures should provide a promising way to increase the coupling efficiency of thin film solar cells and optical detectors of different wavelength response.
Resumo:
For a second-order DFB-LD, the presence of a metal contact layer can reduce I-st-order radiation. Part of the reflected power is redistributed into guided modes and results in a variation of the effective coupling coefficient kappa(eff). In this paper, we study the effect of the Au top contact's reflection on the kappa(eff) of 2(nd)-order DFB lasers. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Decoherence properties of two Josephson charge qubits coupled via the sigma(x)sigma(x) type are investigated. Considering the special structure of this new design, the dissipative effects arising from the circuit impedance providing the fluxes for the qubits' superconducting quantum interference device loops coupled to the sigma(x) qubit variables are considered. The results show that the overall decoherence effects are significantly strong in this qubit design. It is found that the dissipative effects are stronger in the case of coupling to two uncorrelated baths than are found in the case of one common bath.
Resumo:
We have calculated the in-plane conductance of a barrier with the Dresselhaus spin-orbit interaction, which is sandwiched between two spin-polarized materials aligned arbitrarily. Besides a transmitted in-plane current which arises on the drain side as pointed out in Phys. Rev. Lett. 93, 056601 (2004), a reflected in-plane current always appears simultaneously on the source side near the interface of the barrier. The spin polarization of the source affects the transmitted current more than the reflected one, and conversely the spin polarization of the drain affects the reflected current more. The relationship between transmitted current and the reflected one has been studied.