318 resultados para Bi-directional coupling
Resumo:
It is shown that the variable power singularity of the strain field at the crack tip can be obtained by the simple technique of collapsing quadrilateral isoparametric elements into triangular elements around the crack tip and adequately shifting the side-nodes adjacent to this crack tip. The collapsed isoparametric elements have the desired singularity at crack tip along any ray. The strain expressions for a single element have been derived and in addition to the desired power singularity, additional singularities are revealed. Numerical examples have shown that triangular elements formed by collapsing one side lead to excellent results.
Resumo:
A finite element algorithm is used to analyze the process of floating zone crystal growth under microgravity. The effect of phase change convection coupled with surface tension convection is considered. The results show that the rate of crystal growth is very important. The single-crystal-melt interface is steeper than the feed-melt interface during the process of crystal growth. When the rate exceeds a critical value, the Marangoni vortex near the feed-melt interface will become so large that a secondary vortex will exist.
“Deborah Numbers”, Coupling Multiple Space and Time Scales and Governing Damage Evolution to Failure
Resumo:
Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.
Resumo:
Numerical simulations of fs laser propagation in water have been made to explain the small-scale filaments in water we have observed by a nonlinear fluorescence technique. Some analytical descriptions combined with numerical simulations show that a space-frequency coupling mainly from the interplay among self-phase modulation, dispersion and phase mismatching will reshape the laser beam into a conical wave which plays a major role of energy redistribution and can prevent laser beam from self-guiding over a long distance. An effective group velocity dispersion is introduced to explain the pulse broadening and compression in the filamentation. (c) 2005 American Institute of Physics.
Resumo:
Bi-doped BaF2 crystal was grown by the temperature gradient technique and its spectral properties were investigated. The absorption, emission and excitation spectra were measured at room temperature. Two broadband emissions centered at 1070 and 1500 nm were observed in Bi-doped BaF2 crystal. This extraordinary luminescence should be ascribed to Bi-related centers at distinct sites. We suggest Bi2+ or Bi+ centers adjacent to F vacancy defects are the origins of the observed NIR emissions. (C) 2009 Optical Society of America
Resumo:
We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.
Energy transfer and enhanced broadband near-infrared luminescence in Yb-Bi codoped phosphate glasses