187 resultados para BIS(PHTHALOCYANINATO)TERBIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tridentate ligand N-(2-((2,6-diisopropylphenylimino)methyl)phenyl)quinolin-8-amine (HL) was prepared. Treatment of HL with 1 equiv of Ln(CH2SiMe3)(3)(THF)(2) afforded the corresponding rare-earth metal bis(alkyl) complexes LLn(CH2SiMe3)(2)(THF)(n) (Ln = Sc, n = 0 (1); Y, n = 1 (2); Lu, n = 0 (3)) in high yields. Variable-temperature H-1 NMR spectral analysis showed that these complexes were fluxional at room temperature. Complexes 1 and 3 were THF-free, where the metal center adopted a square-pyramidal geometry, while in 2 the metal center generated a distorted octahedral geometry owing to the coordination of a THF molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newrareearth metal bis(alkyl) complexes [(NPNPh)Ln(CH2SiMe3)(2)(THF) (NPNPh:N(Ph)PPh2=NC6H2Me3-2,4,6; Ln = Sc (3a), Ln = Y (3b), Ln = Lu (3c)) and [(NPNPy)Sc(CH2SiMe3)(2)(THF)1 (NPNPY = N(Py)PPh2=NC6H2Me3-2,4,6) (3d)) have been prepared via protonolysis reaction between rare earth metal tris(alkyl)s and the corresponding iminophosphonamines. Complexes 3a-d are analogous monomers of THF solvate. Each metal ion coordinates to a eta(2)-chelated NPN ligand and two cis-located alkyl groups, adopting tetrahedron geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, vertical structure p-type permeable-base organic transistors were proposed and demonstrated. A hole-type organic semiconductor N,N-'-diphentyl-N,N-'-bis(1-naphthylphenyl)-1,1(')-biphenyl-4,4(')-diamine was used as emitter and collector. In the permeable-base transistors, the metal base was formed by firstly coevaporating Al and Ca in vacuum and then annealing at 120 degrees C for 5 min in air, followed by a thin Al deposition. These devices show a common-base current gain of near 1.0 and a common-emitter current gain of similar to 270.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel periodic mesoporous organosilica (PMO) material was synthesized through one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and benzoic acid-functionalized organosilane (BA-Si) using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent under basic conditions. The materials were fully characterized by FTIR, XRD, N-2 adsorption-desorption isotherms and FESEM. FTIR spectra proved that BA-Si was successfully incorporated into the PMO materials (PMOs) via benzyl group as a linker. XRD and N-2 adsorption-desorption isotherms revealed the characteristic mesoporous structure with highly uniform pore size distributions. FESEM confirmed that the morphology of the PMOs was significantly dependent cri the molar ratio of two organosilica precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A urea-based bis-silylated bipyridine ligand derived from 4,4'-diamino-2,2'-bipyridine has been prepared. Organic-inorganic hybrid materials with a high loading of lanthanide 2,2-bipyridine moieties were obtained by using the silylated bipyridine as the only siloxane network precursor in the presence of lanthanide ions (or lanthanide complexes). The in-situ formation of lanthanide complexes from lanthanide ions and the silylated bipyridine during the sol-gel processing was confirmed by the luminescence behavior of the obtained hybrid materials and that of the corresponding pure lanthanide complex [Ln(bpy)(2)Cl-3 center dot 2H(2)O].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) possessing a conjugated pyridinone ring was shown to be effective for dispersing multiwalled carbon nanotubes (MWCNTs) in DMSO. The dispersions in which the SPBIBI to MWCNTs mass ratio was 4:1 demonstrated the highest MWCNTs concentrations, i.e., 1.5-2.0 mg mL(-1), and were found to be stable for more than six months at room temperature. Through casting of these dispersions, MWCNTs/SPBIBI composite membranes were successfully fabricated on substrates as proton exchange membranes for fuel cell applications and showed no signs of macroscopic aggregation. The properties of composite membranes were investigated, and it was found that the homogeneous dispersion of the MWCNTs in the SPBIBI matrix altered the morphology structures of the composite membranes, which lead to the formation of more regular and smaller cluster-like ion domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four aromatic tetraamine monomers possessing flexible ether linkages were successfully synthesized by nucleophilic aromatic substitution of hydroquinone, 4,4'-dihydroxybiphenyl, 2,2'-bis(4-hydroxyphenyl)propane, and 2,7-dihydroxynaphthalene with 5-chloro-2-nitroaniline, followed by reduction, respectively. With these monomers, a new class of soluble poly[ bis(benzimidazobenzisoquinolinones)] was prepared by a one-step, high-temperature solution polycondensation. The resulting polymers were completely soluble in phenolic solvents and had high inherent viscosities ranging from 1.2 to 1.5 g dL(-1). These polymers had glass transition temperatures in the range of 427-449 degrees C. Thermogravimetric analysis showed that all polymers were thermally stable, with 5% weight loss recorded above 510 degrees C in nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sulfonated tetraamine, di(triethylammonium)-4,4'-bis(3,4-diaminophenoxy)biphenyl-3,3'-disulfonate (BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4'-dihydroxybiphenyl with 5-chloro-2-nitroaniline, followed by sulfonation and reduction. A high-temperature polycondensation of sulfonated tetraamine, non-sulfonated tetraamine (4,4 -bis(3,4-aminophenoxy)biphenyl) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (a) or 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianydride (b) gave the poly[bis(benzimidazobenzisoquinolinones)] ionomers SPBIBI-a(x) or SPBIBI-b(x), where x refers to the molar percentage of the sulfonated tetraamine monomer. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The ionomer membranes displayed excellent dimensional and hydrolytic stabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel water resistant sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBIs) were synthesized from 6,6'-disulfonic-4,4'-binaphthy]-1,1',8,8'-tetracarboxylic dianhydride (SBTDA) and various aromatic ether tetraamines. The resulting polymers with IEC in the range of 2.17-2.87 mequiv g(-1) have a combination of desired properties such as high solubility in common organic solvents, film-forming ability, and excellent thermal and mechanical properties. Flexible and tough membranes, obtained by casting from m-cresol solution, had tensile strength, elongation at break, and tensile modulus values in the range of 87.6-98.4 MPa, 35.8-52.8%, and 0.94-1.07 GPa. SPBIBI membranes with a high degree of sulfonation displayed high proton conductivity and a good resistance to water swelling as well. SPBIBI-b with IEC of 2.80 mequiv g(-1) displayed the conductivity of 1.74 x 10(-1) S cm(-1) at 100 degrees C, which was comparable to that of Nafion (R) 117 (1.78 x 10(-1) S cm(-1), at 100 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient synthesis of (TMS)(2)-[7]helicene (rac-3) and double helicene, a D-2-symmetric dimer of 3,3'-bis(dithieno-[2,3-b:3',2'-d]thiophene) (rac-4) was developed. The crystal structures of 3 and 4 show both strong intermolecular pi-pi interactions and S center dot center dot center dot S interactions. UV/vis spectra reveal that both 3 and 4 show significant pi-electron delocalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of aluminum ethyls and isopropoxides based on a bis(pyrrolidene) Schiff base ligand framework has been prepared and characterized. NMR studies of the dissolved complexes indicate that they adopt a symmetric structure with a monomeric, five-coordinated aluminum center core. The aluminum ethyls used as catalysts in the presence of 2-propanol as initiator and the aluminum isopropoxides were applied for lactide polymerization in toluene to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number-average molecular weights of the isolated polymers. All of these aluminum complexes polymerized (S,S)-lactide to highly isotactic PLA without epimerization of the monomer, furnished isotactic-biased polymer from rac-lactide, and gave atactic polymer from meso-lactide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

novel compound (BCBP) based on the modification of a well-known host material 4,4'-(bis(9-carbazolyl))biphenyl (CBP) through arylmethylene bridge linkage was synthesized, and fully characterized. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied. A high glass transition temperature (T-g) of 173 degrees C is observed for BCBP due to the introduction of the bridged structure, remarkably contrasting with a low T-g of 62 degrees C for CBP. Furthermore, the bridged structure enhances the conjugation and raises the HOMO energy, thus facilitating hole-injection and leading to a low turn-on voltage in an electroluminescent device. With the device structure of ITO/MoO3/NPB/Ir complex: BCBP/BCP/Alq(3)/LiF/Al, maximum power efficiencies of 41.3 lm/W and 6.3 lm/W for green- and blue-emitting OLED were achieved, respectively.