40 resultados para Automobiles--Seat belts--Juvenile literature
Resumo:
The reuse of holdfasts for regeneration of young seedlings or using wild juvenile plants as the seedling source has played the major role in commercial cultivation of the brown alga Hizikia fusiformis in East Asia over the past 20 years. The possibility of employing zygote-derived germlings for producing seedlings has been discussed in the literature, but has not yet become a reality. Three main obstacles have limited the use of zygotes as a main source of seedlings, (1) the dioecious nature of the algal life cycle which may lead to asynchronous male and female receptacle development and thus different timing of egg and spermatozoa expulsion, (2) the low attachment rate when using zygote-derived germlings with developed rhizoids from wild parental plants for seeding production, and (3) the problem of culturing young germlings in regions where water temperature is high in summer. In this investigation, shifting the timing of receptacle formation earlier than in nature was performed by tumbling the algae in a long-day tank (16-h light per day). Synchronization of egg and spermatozoa expulsion and thereafter fertilization were conducted in indoor tanks. Receptacle formation in constant long days could be shifted by 20 days earlier than in plants cultured on long lines in the open sea, or I month earlier than in plants growing on intertidal rocks. Synchronized expulsion of eggs and spermatozoon led to a high rate of fertilization. This was achieved by tumbling the male and female receptacle-bearing branchlets in the same tank at low density in high irradiance. In two independent trials, a total of 1,400,000 zygote-derived germlings were obtained from 620 g (fresh weight) female sporophytes. The germlings shed from the receptacles were at an identical developmental stage indicating high synchronization of expulsion of eggs and spermatozoon followed by fertilization. Approximately 63% ( +/-9.6%) of the germlings were shed from the receptacle between 16 and 24 It after fertilization and 20% ( +/-11.9%) remained on the receptacle for 3 days after fertilization. Germlings were seeded on string collectors before rhizoids started to elongate and the attachment efficiency was enhanced. Young seedlings reached 800 ( +/-50) mum in length in 25 days at 25 degreesC before they were transferred to open sea cultivation. These results provide the basis of a practical way of seedling production by use of zygote-derived germlings in the commercial cultivation of Hizikia fusiformis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Juvenile tiger prawns (Penaeus semisulcatus De Haan and P. esculentus Haswell) show a strong association with vegetated habitats and are rarely caught on non-vegetated areas. This pattern of distribution may be caused by postlarvae selecting vegetation when they settle, or to differences in post-settlement mortality in different habitats. In this study, we examined whether the postlarvae and early juvenile stages of P. semisulcatus would distinguish between seagrass (Zostera capricorni Aschers) without epiphytes, artificial seagrass and bare substratum in the laboratory. The responses of prawns reared from the egg to different stages of postlarval and juvenile development were tested to determine whether, and when, each size class showed a response to a particular habitat. Five size classes of postlarvae (average carapace lengths [CL] of 1.2, 1.4, 1.6, 1.7 and 2.0 mm) were offered a choice between Z. capricorni and bare sand. Small size classes of postlarvae either did not respond to Z. capricorni (1.2 and 1.6 mm CL), or were more abundant on bare substratum than Z. capricorni. In contrast, the largest size classes of postlarvae (1.7 and 2.0 mm CL) were more abundant on Z. capricorni during the day but not at night. The behaviour of postlarvae changed markedly at a size of 1.7 mm CL (22 days from the first nauplius): smaller postlarvae frequently swam in the water column; 1.7 and 2.0 mm CL postlarvae spent much more. time resting on the substrate and perched on seagrass leaves. This size at which postlarvae first respond to seagrass during the day, and show mainly benthic behaviour, is similar to the size at which they are found on shallow seagrass beds in northern Australia. Large postlarvae (2.7 mm CL) and juveniles (4.1 mm CL) both were more abundant on artificial seagrass than bare sand during the day but not at night, indicating that they respond to structured habitats. When large postlarvae (2.4 mm CL) and juveniles (3.5 mm CL) were offered a choice between Z. capricorni without epiphytes and artificial seagrass, they were more abundant on the Z. capricorni, which suggests that chemical cues from seagrass may explain some of the responses of P. semisulcatus to seagrass. (C) 1997 Elsevier Science B.V.
Resumo:
Japanese flounder Paralichthys olivaceus (T. & S.)juveniles were size-graded and divided into three groups (small, large, and mixture of small and large flounder), and their social interactions (feeding, aggressive attacking and activity) and growth were investigated. The growth of the small flounder was markedly suppressed by the presence of the large flounder. Large flounder did not significantly suppress the overall food intake of the small flounder but exhibited high aggressive attacking on them and consequently inhibited their activity. Size dominance showed little influence on the aggressive behavior, feeding, activity and growth of the large flounder. The large flounder could not effectively defend the food in excess during the experiments ruling out disproportional food acquisition as the primary mechanism responsible for the size hierarchy effect. Aggressive interaction of the large flounder on the small flounder might be an important cause for the growth retardation of the small flounder. In culture, size grading could markedly improve the growth and survival of the early juvenile flounder. (C) 2004 Elsevier B.V. All rights reserved.
Growth, pigmentation and activity of juvenile Japanese eels in relation to temperature and fish size
Resumo:
The growth and activity of juvenile Japanese eels Anguilla Japonica in different pigmentation stages from the glass eel to the elver stage were studied in the laboratory at 15, 20 and 25degrees C. The growth and activity of the eels were significantly influenced by both temperature and fish size. Growth rate generally declined with increasing fish size, and fish were least active and experienced a low growth during the pigmenting stage at all temperatures. They were nocturnal and spent significantly more time moving (swimming, feeding and moving over the substratum) at 20 and 25degrees C than at 15degrees C at night within each pigmentation stage. Accordingly, they grew significantly Faster at 20 and 25degrees C than at 15degrees C throughout the study. The development of pigmentation appeared to be dependant on water temperature but not on fish size. This study suggested that the growth and activity of juvenile Japanese eels were positively correlated, because fish were least active and grew slowest at low temperature (15degrees C) or during the pigmenting stage at all temperatures. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 mu g g(-1)) or 3 reGH injections (0.25 mu g g(-1) every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 mu g g(-1)) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 mu g g(-1)) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70 % SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.
Resumo:
We studied the possible role that marine microalgae may play during the outbreaks of WSS (white spot syndrome). In order to elucidate the possibility of marine microalgae carrying WSSV (white spot syndrome virus), six marine microallgae (Isochr.vsis galbana, Skeletonema costatum, Chlorella sp., Heterosigma akashiwo, Scrippsiella trochoidea, Dunaliella salina) were co-cultured with adult Marsupenaeus japollicus infected with WSSV and were assayed daily by nested-PCR to study whether they could carry WSSV. Further experiments were conducted to investigate whether the virus carried by microalgae could re-infect juvenile M. japonicus. Results showed that all of the experimental microalgae, except H. akashiwo could carry WSSV, and among them, Chlorella sp. and S. trochoidea had the strongest WSSV-carrying ability. Unlike other invertebrate carriers of WSSV, the WSSV detections in microalgae, which were positive after I and 3 days, were negative after 10 days of incubation. WSSV detection results in juvenile M. japonicus showed that the juvenile shrimp were re-infected by co-cultured Chlorella sp., although the juvenile M. japonicus carried so small an amount of WSSV that it could only be detected by nested-PCR. The results of this experiment suggest that microalgae might be one possible horizontal transmission pathway for WSSV. Further research, however, is required to better understand the factors behind the different carrying abilities and virus-carrying mechanisms of different microalgae. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
During winter months, a novel overwintering mode of transferring juvenile abalones to open seawaters in southern China rather than keeping them in closed land-based nursery systems in northern China is a popular practice. The initial size, stocking density and sorting are among the first considerations when establishing an abalone culture system. This study aimed to investigate the effects of these factors on the growth of juvenile Pacific abalone, Haliotis discus hannai Ino, during overwintering. Juvenile abalones were reared in multi-tier basket form for overwintering in open seawaters in southern China for 106 days. The daily growth rates (DGRs) in the shell length of all experimental groups ranged from 67.08 to 135.75 mu m day(-1), while the specific growth rates (SGRs) were 0.2447-0.3259% day(-1). Variance analysis indicated that both DGRs and SGRs in shell length were significantly affected by the initial body size and stocking density. Furthermore, the effects of stocking density on DGRs and SGRs varied with the initial size. However, sorting abalones according to their initial sizes may not be necessary in practice as sorting did not alter growth significantly at all densities in this study. Factors potentially affecting abalone growth such as genetic control and intraspecific competition were discussed.
Resumo:
Acute peristome edema disease (APED) is a new disease that broke out in cultured sea cucumber along the Shangdong and Liaoning province coasts in China, PR, and has caused a great deal of death in Apostichopus japonicus (Selenka) since 2004. Here we report virus-like particles found in intestine epithelium of sea cucumbers reared in North China. It is the first time that sea cucumbers are reported to be infected by virus. Histological examinations showed that the viral inclusion bodies existed in intestine epithelium cells. Electron microscopic examinations show that the virions were spherical, 80-100 nm in diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Detailed studies on the morphogenesis of these viruses found many characteristics previously described for coronaviruses. Virus particles always congregated, and formed a virus vesicle with an encircling membrane. The most obvious cellular pathologic feature is large granular areas of cytoplasm, relatively devoid of organelles. Tubular structures within virus-containing vesicles, nucleocapsid inclusions, and double-membrane vesicles are also found in the cytopathic cells. No rickettsia, chlamydia, bacteria, or other parasitic organisms were found. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In many plant species, leaf morphology varies with altitude, an effect that has been attributed to temperature. It remains uncertain whether such a trend applies equally to juvenile and mature trees across altitudinal gradients in semi-arid mountain regions. We examined altitude-related differences in a variety of needle characteristics of juvenile (2-m tall) and mature (5-m tall) alpine spruce (Picea crassifolia Kom.) trees growing at altitudes between 2501 and 3450 m in the Qilian Mountains of northwest China. We found that stable carbon isotope composition (delta C-13), area- and mass-based leaf nitrogen concentration (N-a, N-m), number of stomata per gram of nitrogen (St/N), number of stomata per unit leaf mass (St/LM), projected leaf area per 100 needles (LA) and leaf mass per unit area (LMA) varied nonlinearly with altitude for both juvenile and mature trees, with a relationship reversal point at about 3 100 m. Stomatal density (SD) of juvenile trees remained unchanged with altitude, whereas SD and stomatal number per unit length (SNL) of mature spruce initially increased with altitude, but subsequently decreased. Although several measured indices were generally found to be higher in mature trees than in juvenile trees, N-m, leaf carbon concentration (C.), leaf water concentration. (LWC), St/N, LA and St/LM showed inconsistent differences between trees of different ages along the altitudinal gradient. In both juvenile and mature trees, VC correlated significantly with LMA, N-m, N-a, SNL, St/LM and St/N. Stomatal density, LWC and LA were only significantly correlated with delta C-13 in mature trees. These findings suggest that there are distinct ecophysiological differences between the needles of juvenile and mature trees that determine their response to changes in altitude in semi-arid mountainous regions. Variations in the fitness of forests of different ages may have important implications for modeling forest responses to changes in environmental conditions, such as predicted future temperature increases in high attitude areas associated with climate change.
Resumo:
The South China craton was formed by the collision of the Yangtze and Cathaysia blocks during the Neoproterozoic Jiangnan orogeny (also termed as the Jingnin or Sibao orogeny in Chinese literature). Basement rocks within the Yangtze block consist mainly of Proterozoic sediments of the Lengjiaxi and Banxi Groups. U-Pb ages of detrital zircons obtained by the LA-ICP-MS dating technique imply that the deposition of the Lengjiaxi Group continued until the Neoproterozoic. The youngest detrital zircons suggest a maximum deposition age of ~830 Ma for the Lengjiaxi Group, consistent with the initiation time of the deposition of the overlying Banxi Group, likely indicating continuous deposition of these two groups and a short temporal hiatus (~10 Ma) between the Neoproterozoic sedimentary rocks distributed in the South China craton. Detrital zircons from both the Lengjiaxi and Banxi Groups have a wide range of εHf(t) values from -12 to 14.2 and a continuous Nd and Hf model age spectrum from ~820 Ma to 2200 Ma. Some grains have model ages ranging up to ca. 2.9-3.5 Ga, indicating that both juvenile mantle material and ancient crust provided sedimentary detritus. This is also consistent with the Nd isotopic signature of sedimentary rocks recorded in the Lengjiaxi Group, suggesting a back-arc tectonic setting. The Banxi Group has slightly enriched Nd isotopic signatures relative to the Lengjiaxi Group, implying a higher percentage of old continental material in the sedimentary source. Combined with previously published data, new results can help us to reconstruct the Neoproterozoic tectonic evolution of the South China craton. The age spectrum of detrital zircons and Nd-Hf isotopic composition suggests a two-stage collision: Between 1000 Ma to 870 Ma, a continental magmatic arc was build up along the eastern margin of the Yangtze block. Convergence led to continent-based back-arc extension, subsidence and formation of a back-arc basin. Detritus originating from arc-related magmatic and old basement rocks was transported into this back-arc basin resulting in formation of the Lengjiaxi Group and its equivalents. At around 870 Ma, a second (oceanic) arc was formed by extension of an inter-arc basin, subduction subsequently led to the first collision and the emplacement of the blueschist mélange. Accretion of the magmatic arc lasted until the closure of an oceanic basin between the Yangtze and Cathaysia blocks at about 830 Ma. Shortly after the collision, subsequent uplift, further extension of the former back-arc basin and post-collisional granitoid magmatism caused a tilting of the Lengjiaxi sediments. Between 830 Ma and 820 Ma, subsequent closure of the oceanic back-arc basin and formation of the Jiangnan orogen took place, leaving a regional unconformity above the Lengjiaxi Group. Above this unconformity the Banxi Group was immediately deposited during the post-tectonic stage.