34 resultados para Android maps mappe gcm push notification push-notification sensors sensori


Relevância:

20.00% 20.00%

Publicador:

Resumo:

对于背景灰度不一致的图像的二值化问题,可采用在图像的不同区域选取不同阈值的动态阈值曲面方法解决。本文提出一种有序变化的动态阈值曲面方法,通过选取三个动态变化调节系数,使曲面动态地逼近阈值分割的最佳值,同时又降低曲面的误分割,能较好地提取二值图像。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reservoir prediction techniques from prestack seismic are among the most important ones for exploration of lithologic hydrocarbon reservoir. In this paper, we set the turbidite fan sandstone reservoir in Liao-Zhong depress as our researching target, and aims to solve the apllication difficulties on pre-stack inversion in the area, where the drilling data is scarce and the reservoir is lateral varied. Meanwhile, AVO analysis and pre-stack inversion for gas-bearing detection is systematically researched. The seismic reflection characters of gas-bearing sandstone in turbidite fan with different fluid content are defined, after analyzing results from AVO seismic simulation and porous fluid replacement of real log data, and under the guides of the seismic characters from classical gas-bearing sandstone reservoir and numerical simulation for complicate gas-bearing sandstone. It is confirmed that detecting gas-bearing sandstone in turbidite fan via AVO technologies is feasible. In terms of AVO analysis, two AVO characters, fluid detection factor and product of intercept and gradient, can effectively identify top and bottom boundaries and lateral range of tuibidite gas sand by comparing real drilling data. Cross-plotting of near and far angle stack data could avoid the correlation existing in P-G analysis. After comparing the acoustic impedance inversions with routine stacked data and AVO intercept, impedance derived from AVO intercept attribute could reduce the acoustic impedance estimating error which is caused by AVO. On the aspect of elastic impedance inversion, the AVO information in the pre-stack gathers is properly reserved by creating partial angle stack data. By the far angle elastic impedance alone, the gas sand, with abnormally low range of values, can be identified from the background rocks. The boundary of gas sand can also be clearly determined by cross-plotting of near and far angle elastic impedances. The accuracy of far angle elastic impedance is very sensitive to the parameter K, and by taking the statistical average of Vp/Vs on the targeted section in key wells, the accuracy of low frequency trends is gurranteed; the intensive absorsion within the area of the gas sand, which tends to push the spectral of seismic data to the lower end, will cause errors on the inversion result of elastic impedance. The solution is to confine the inversion on the interested area by improving the wavelet. On the aspect of prestack AVA simultaneous inversion, the constraint of local rock-physical trends between velocities of P-wave、S-wave and density successfully removes the instability of inversion, thus improves the precision of the resulting elastic parameters. Plenty of data on rock properties are derived via AVO analysis and prestack seismic data inversion. Based on them, the fluid anomaly is analysized and lithological interpretation are conducted. The distribution of gas sand can be consistently determined via various of ways, such as cross-plotting of P and G attributes, near and far partial angle stack data, near and far angle elastic impedances, λρ and Vp/Vs, etc. The shear modulo and density are also reliable enough to be used for lithological interpretation. We successfully applied the AVO analysis and pre-stack inversion techniques to gas detecting for turbidite fan sand reservoir in Liao-Zhong depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brand placement is to present the information of products and brands through certain entertainments and non-commercial areas. Since 1990's, brand placement has become a major way of spreading advertisement and a new growing point of the global advertising market. In china, it is easily seen from spring festival evening gala of CCTV to all kinds of movie and TV shows, and is thus interested by many brand owners, advertisers and communication researchers. Since 2006, the people in the media circles have begin to take full care of the study of the brand placement. In general, there is still certain distance between the theoretical studies and the reality. It's a general problem over the world and is especially true for China as this was just a new idea. As the biggest global economic entity, China is the most potential and powerful market, thus the market of the brand placement will be huge. To push its development, it's then crucial to have theoretical studies on it. Many questions have not been explained yet in this area, mostly essential is to ask what kind of advantage it acquires compared with the traditional advertisement, if there is, how does such advantage show? What kind of factors influents the market effect of the brand placement? All these questions are not answered yet. Also it's well-known that a successful advertisement relies heavily on the understanding of the culture. Thus a specific thing to deal with is to study the effects according to the Chinese culture, which can make constructive suggestion to the whole industry. Our research is to compare the effects between the brand placement with the ordinary media advertisements, discuss its possible influences, and try to make certain suggestions to the future running and development. Our research obtains the following results by using the movie and advertisement in reality: (1) Like ordinary media ad’s, brand placement can improve the brand recognition of the audience significantly. (2) The ordinary ad's make the people easier to remember them than brand placement, while not too much difference in the brand recognition. (3) The brand placement has a significant 'emotional shifting' effect, i.e. the more positive to the movie, the more you love the built-in brand. (4) It is an important factor that how much brand information is involved in the movie; while how much the plot is involved has great impact on the 'emotional shifting' effect. (5) The familiarity is a great factor for the ad's, it's obvious that the popular products get way better effects through brand replacement. (6) An effective way is to choose those positive, interesting and eye-catching movies and TV shows as carriers of the brand and to use it as natural as possible.