55 resultados para Ammonia beccarii dextral, d13C
Resumo:
Ammonia-treated activated carbon has been studied as a support of Ru-Ba catalyst for ammonia synthesis. It is shown that the introduction of nitrogen leads to a decrease of ammonia synthesis activity for the catalysts with a low Ba/Ru molar ratio, while no significant changes are obtained for the catalysts with a high Ba/Ru molar ratio, confirming that electronegative impurities suppress the activity in ammonia synthesis and consume part of the promoters.
Resumo:
Graphitic-nanofilaments (GNFs) supported ruthenium catalysts were prepared and characterized by NZ physisorption, X-ray diffraction (XRD), transmission electron microscope (TEM) and temperature programmed reduction-mass spectroscopy (TPR-MS) and used for ammonia synthesis in a fixed bed microreactor. The TEMs of the Ru/GNFs and Ru-Ba/GNFs catalysts indicate that the Ru particles are in the range of 2-4 nm, which is the optimum size of Ru particles for the maximum number of B5 type sites. The activity of Ru-Ba/GNFs catalysts is higher than that of Ru-Ba/AC by about 25%. The methanation reaction on the Ru/GNFs catalyst is remarkably inhibited compared with a Ru/AC catalyst. High graphitization of GNFs is likely to be the reason for the high resistance to the methanation reaction. The power rate law for ammonia synthesis on Ru-Ba/GNFs catalysts can be expressed by r = Kp(NH3)(-0.4) P-N2(0.8) P-H2(-0.7), indicating that H-2 is an inhibitor for N-2 activation on the catalyst. Catalysts with the promoters Ba, K and Cs show large differences in activity for ammonia synthesis. The catalyst promoted with Ba (Ba/Ru = 0.2 molar ratio) was found to be the most active, whereas that with a K promoter was the least active. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Submicrometer zinc oxide (ZnO) with different morphologies including spindle-like, pencil-like, branch rod-like and frizzy flower-like shapes, have been hydrothermally synthesized in mixed solvents of ethanol and water at 140 degrees C. It was found that the volumes of added ammonia, surfactant (cetyltrimethylammonium bromide, CTAB), and mixed solvent play crucial roles in morphological control of ZnO nanostructures. Increasing the volume of ammonia added to the reaction system, the shape of ZnO evolves from spindle into branch rod-like. Synergetic influence between CTAB and ammonia can only be observed at high concentration of ammonia.
Resumo:
A series of Sr2+ doped perovskite like oxides La2-xSrxCuO4-lambda (x = 0 similar to 1) were prepared, the structure, lattice parameters, content of Cu3+, oxygen vacancies created by Sr2+ substitution and composition of these complex oxides were studied by XRD and iodic titration method. The redox ability,active oxygen species and surface image were evaluated and analyzed with TPD, TG, XPS and SEM measurements. The catalytic activity for ammonia oxidation over these oxides was tested, and the relationship among the catalytic properties, structure, nonstoichiometric oxygen,redox ability and surface behavior were correlated and some information on the mechanism of ammonia oxidation was obtained.
Resumo:
It has been found that the interaction between the two transition metal Mn, Co ions on B-site and their Redox property an the important factors influencing the NO-selectivity in ammonia oxidation. The NO-selectivity is related to the redox ability of Mn3+
Resumo:
The type of oxygen species in perovskite-type oxides LaMnyCo1-yO3 (y = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) has been studied by means of XRD, XPS and TPD. The catalytic activity in ammonia oxidation was also investigated. It was found that there were three desorption peaks in TPD curve corresponding to three types of oxygen species (alpha, beta, beta'). The desorption temperatures were 293 K less-than-or-equal-to T(alpha) less-than-or-equal-to 773 K, 773 K less-than-or-equal-to T(beta) less-than-or-equal-to K and T(beta') greater-than-or-equal-to 1073 K respectively. The relationship among the composition, structure and the catalytic property of.the catalyst was correlated and could be explainned with a model based on solid defect reaction and the interaction between Co and Mn ions. The adsorption strength and quantity of a oxygen are proportional to the catalytic activity. The, result indicates that the synergetic effect between B-site ions seems to the benefit of the ammonis oxidation reaction.
Resumo:
Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.
Resumo:
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.