125 resultados para Aluminum-magnesium alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-5Al-0.3Mn-xCe (x = 0-3, wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results revealed that the main phases of as-cast Mg-5Al-0.3Mn alloy consist of alpha-Mg matrix and beta-Mg17Al12 phase. With the addition of Ce element, Al11Ce3 precipitates were formed and mainly aggregated along the grain boundaries. The amount of the Al11Ce3 precipitates increased with increasing addition of Ce, but the amount of beta-Mg17Al12 phase decreased. The highest tensile strength was obtained in Mg-5Al-0.3Mn-1.5Ce alloy. The ultimate tensile strength (UTS), yield strength (YS) and elongation at room temperature are 203 MPa, 88 MPa and 20%, separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-8Gd-0.6Zr-xNd (x = 0, 1, 2 and 3 mass%) alloys were prepared by metal mould casting method, and the microstructures, age hardening responses and mechanical properties have been investigated. The microhardness of the as-cast alloys is increased with increasing Nd content. The age hardening behavior and mechanical properties are enhanced significantly by adding Nd element. The peak ageing hardness of the Mg-8Gd-0.6Zr-3Nd alloy is 103, it is about 1.3 times more than that of the Mg-8Gd-0.6Zr alloy. The aged Mg-8Gd-0.6Zr-3Nd alloy exhibits maximum ultimate tensile strength and yield strength, and the values are 271 and 205 MPa at room temperature, 205 MPa and 150 MPa at 250 degrees C, respectively. Which are about 2 times higher than those of Mg-8Gd-0.6Zr alloy. The improved hardness and strength are mainly attributed to the fine dispersiveness Of Mg5RE and Mg12RE precipitates in the alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single phase WxAl(50)Mo(50)-X (X=40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 degrees C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 degrees C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mg-based metal matrix composite reinforced by 10 wt.% W14Al86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W14Al86 alloy. Mechanical properties characterization revealed that the reinforcement of W14Al86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a novel substitutional solid solution (W0.8Al0.2)C was synthesized by mechanically activated high-temperature reaction. X-ray diffraction was used for phase identification during the whole reaction process. Environment scanning electronic microscopy-field emission gun and energy dispersive x-ray were used to investigate the microstructure and the quantitative material composition of the specimen. (W(0.8)A(10.2))C was found to crystallize in the WC-type, and the cell parameters were a = 2.907(1) angstrom and c = 2.837(1) angstrom. The hardness of (W0.8Al0.2)C was tested to be 19.3 +/- 1 GPa, and the density was 13.19 +/- 0.05 g cm(-3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-8Gd-0.6Zr-xNd-yY (mass%) alloys which containing different Nd:Y mass ratio of 3:0, 2:1, 1:2 and 0:3 with a constant x + y = 3 were prepared by metal mould casting method, and the microstructure, aging behaviour and tensile properties have been investigated. The fibrous eutectic areas along the boundaries enlarge clearly in the as-cast alloys containing Y element, and the fine grain boundaries and dispersed precipitation are observed in the aged alloys. The Mg-8Gd-0.6Zr-2Nd-Y alloy exhibits notably age-hardening behaviour and the highest mechanical property. The ultimate tensile strength and yield strength of Mg-8Gd-0.6Zr-2Nd-Y alloy in the peak aged hardness are 293 and 221 MPa at room temperature, 248 and 191 MPa at 230 degrees C. The improvement of age-hardening response and tensile properties is mainly attributed to the quadrate-like stable Mg5RE precipitate, which forms readily and orderly in aged Mg-8Gd-0.6Zr-2Nd-Y alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report in this paper the spectral characteristics of Er3+ (2 at.%)-activated and Ce3+ (0.3 at.%)-sensitized yttrium aluminium garnet (YAG:Er,Ce) laser crystals grown by the Czochralski technique. The absorption and emission spectra were measured at room temperature. By using absorption spectra and Judd-Ofelt theory the experimental oscillator strengths of the Er3+ transitions in the YAG:Er,Ce crystals were calculated. The energy transfer between the Er3+ and Ce3+ ions is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanocrystal surface layer of an aluminum alloy induced by High Speed Shot Peening (HSSP) was investigated in this paper. The results of nanoindentation experiment show that the elastic modulus and the hardness of nanocrystal surface layer increased,by 8% and 20%, respectively. The elastic modulus and the hardness appear to be independent of the distance from nanocrystalized surface and the process time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the dynamic shear strength of a unidirectional C/A356.0 composite and A356.0 alloy, respectively, are measured with a split Hopkinson torsional bar (SHTB) technique. The results indicate that the carbon fibers make very little contribution to the enhancement of the shear strength of the matrix material. The microscopic inspections on the fracture surface of the composite show a multi-scale zigzag feature. This implies that there is a complicated shear failure mechanism in the unidirectional carbon/aluminum composite.