404 resultados para Alkali-aggregate reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel method for performing polymerase chain reaction (PCR) amplification by using spiral channel fabricated on copper where a transparent polytetrafluoroethylene ( PTFE) capillary tube was embedded. The channel with 25 PCR cycles was gradually developed in a spiral manner from inner to outer. The durations of PCR mixture at the denaturation, annealing and extension zones were gradually lengthened at a given flow rate, which may benefit continuous-flow PCR amplification as the synthesis ability of the Taq polymerase enzyme usually weakens with PCR time. Successful continuous-flow amplification of DNA fragments has been demonstrated. The PCR products of 249, 500 and 982 bp fragments could be obviously observed when the flow rates of PCR mixture were 7.5, 7.5 and 3.0 mm s(-1), respectively, and the required amplification times were about 25, 25, and 62 min, respectively. Besides, the successful segmented-flow PCR of three samples ( 249, 500 and 982 bp) has also been reported, which demonstrates the present continuous-flow PCR microfluidics can be developed for high-throughput genetic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometrical parameters and electronic structures of C60, (A partial derivative C60) (A = Li, Na, K, Rb, Cs) and (H partial derivative C60) (H = F, Cl, Br, I) have been calculated by the EHMO/ASED (atom superposition and electron delocalization) method. When putting a central atom into the C60 cage, the frontier and subfrontier orbitals of (A partial derivative C60) (A = Li, Na, K, Rb, Cs) and (H partial derivative C60) (H = F, Cl) relative to those of C60 undergo little change and thus, from the viewpoint of charge transfer, A (A = Li, Na, K, Rb, Cs) and H (H = F, Cl) are simply electron donors and acceptors for the C60 cage resPeCtively. Br is an electron acceptor but it does influence the frontier and subfrontier MOs for the C60 cage, and although there is no charge transfer between I and the C60 cage, the frontier and subfrontier MOs for the C60 cage are obviously influenced by I. The stabilities DELTAE(X) (DELTAE(X) = (E(X) + E(C60)) - E(x partial derivative C60)) follow the sequence I < Br < None < Cl < F < Li < Na < K < Rb < Cs while the cage radii r follow the inverse sequence. The stability order and the cage radii order have been explained by means of the (exp-6-1) potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: