58 resultados para Algorithms, Properties, the KCube Graphs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolvable, size- and shape-controlled ruthenium dioxide nanoparticles are successfully achieved through a two-phase route. The influence of reaction time, temperature, and monomer concentration and the nature of capping agents on the morphologies of nanoparticles are studied through transmission electron microscopy (TEM). A possible mechanism for the formation and growth of nanoparticles is also involved. X-ray powder diffraction (XRD) confirms the amorphous structure for as-prepared ruthenium dioxide nanoparticles. Samples are immobilized by simple dip-coating on a current collector, and the cyclic voltammetry measurement is utilized to investigate their electrochemical properties. The specific capacitance of one sample can teach as high as 840 F g(-1), which reveals the promising application potential to electrochemical capacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel bisphenol monomers (1a-d) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4-tert-butylanilne, respectively. A series of cardo poly (arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a-d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H-2, O-2, N-2, and CO2. The polymers showed high glass transition temperature in the range 230-296 degrees C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410 degrees C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O-2 and 13.80 barrers to CO2, with ideal selectivity. factors of 4.24 for O-2/N-2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure-property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4-tert-butylphenyl group improved the gas permeability of polymers evidently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A red long lasting phosphor Zn-3(PO4)(2): Mn2+ Ga3+ (ZPMG) was prepared by ceramic method, and phase conversion and spectral properties were investigated. Results indicated that the phase conversion from alpha-Zn-3(PO4), beta-Zn-3(PO4)(2) to gamma-Zn-3(PO4)(2) occurs with different manganese concentration incorporated and sinter process. The structural change induced by the phase transformation results in a remarkable difference in the spectral properties. The possible luminescence mechanism for this red LLP with different forms has been illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel cemented carbides alloy (W0.4Al0.6)C-0.65-Co were prepared by mechanical alloying and hot-pressing sintering in this work. Hot-pressing (HP) as a common technique was performed to fabricate the bulk bodies of the hard alloys. The hardness, bending strength, density of the novel hard alloy are also tested, and it has superior mechanical properties. The hardness of (W0.4Al0.6)C-0.65-Co hard alloy was very high, and the density, operate cost of the novel material were much lower than WC-Co, more important is the aluminum dissolving is not decrease the strength compared with the WC-Co system. There is almost no eta-phase in the (W0.4Al0.6)C-0.65-Co cemented carbides system even the carbon deficient reaches the astonishing value of 35%. This novel property will give us more choice to design and gain new materials that we needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aromatic polyimide was synthesized via a one-step polycondensation reaction between biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxydianiline (ODA) in p-chlorophenol. The polyimide (BPDA-ODA) solution dopes were spun into fibers by means of dry-jet wet spinning. The as-spun fibers were drawn and treated in heating tubes for improving the mechanical properties. The thermal treatment on the fibers resulted in a relatively high tensile strength and modulus. Thermal mechanical analysis (TMA) was employed to study the linear coefficient of thermal expansion (CTE). Thermal gravimetry analysis (TGA) spectra showed that the BPDA-ODA fibers possessed an excellent property of thermo-oxidative degradation resistance. The sonic modulus E-s of the polyimide fibers was measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress-strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylenediamine trimolybdate ((C2H10N2)[Mo3O10], denoted as ENTMo) shows unusual photochromic and thermochromic properties. The color of the white ENTMo compounds becomes reddish brown gradually under UV irradiation, and changes gradually to blue-black upon annealing. XRD patterns and FT-IR spectra verify that the crystal structure of the colored samples is almost unchanged except distortion. UV-vis diffuse reflectance spectra (DRS) and ESR spectra of the photochromic and the thermochromic samples could confirm that there must exist difference between thermochromic and photochromic mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Series of novel homo- and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5-bis (4-aminophenyl) pyridine and 2-(4aminophenyl)-5-aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60-9.64 dL/g (c = 0.5 g/dL in DMAC, 30 degrees C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548-598 degrees C in air. The glass transition temperatures of the PMDA-based samples are in the range of 395-438 degrees C, while the BPDA-based polyimides show two glass transition temperatures (T(g)1 and T(g)2), ranging from 268 to 353 degrees C and from 395 to 418 degrees C, respectively. The flexible films possess tensile modulus in the range of 3.42-6.39 GPa, strength in the range of 112-363 MPa and an elongation at break in the range of 1.2-69%. The strong reflection peaks in the wide-angle X-ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. In this paper, an algorithm was developed by the all-paths topological symmetry algorithm to build the automorphism group of a chemical graph. A comparison of several topological symmetry algorithms reveals that the all-paths algorithm (APA) could yield the correct class of a chemical graph. It lays a foundation for the ESESOC system in computer-aided structure elucidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyimide hybrid films containing bimetalic compounds were obtained by codoping poly(amic acid) with a barium and titanium precursor prepared from BaCO3, Ti(OBu)(4), and lactic acid followed by casting and thermal curing. FTIR, WAXD, and XPS measurements showed that barium and titanium precursor could be transformed to BaTiO3 at a temperature above 650 degreesC, while the mixed oxides were only found in hybrid films. The measurements of TEM and AFM indicated a homogeneous distribution of inorganic phase with particle sizes less than 50 nm. The hybrid films exhibited fairly high thermal stability, good optical transparency, and promising mechanical properties. The incorporation of 10 wt % barium and titanium oxide lowered surface and volume electrical resistivity by 2 and 5 orders, respectively, increasing dielectric constant from 3.5 to 4.2 and piezoelectric constant from 3.8 to 5.2 x 10(-12) c/N, relative to the nondoped polyimide film.