112 resultados para Agriculture, Tropical.
Resumo:
The Hainan gibbon (Nomascus hainanus) is one of the most endangered primates in the world, confined to mature natural forest in Hainan Island, China. We assessed changes in habitat condition on the island between 1991 and 2008, using vegetation maps generated by remote-sensing images. We defined forest suitable for gibbons based on composition, tree size and canopy cover. During the 17-year period, the area of suitable gibbon forest decreased by 540 km(2) (35%) across the whole island, and by 6.3 km(2) (7%) in the locality of the sole remaining gibbon population at Bawangling National Nature Reserve. The forest patches large enough (>1 km(2)) to support a gibbon group decreased from 754 km(2) to 316 km(2) in total area, and from 92 to 64 in number. Suitable natural forest was mainly replaced by plantations below 760 m, or degraded by logging, grazing and planting of pines above 760 m. Meanwhile, forests in former confirmed gibbon areas became more fragmented: mean area of patches decreased by 53%. We mapped the patches of natural forest in good condition which could potentially support gibbons. We recommend a freeze on further expansion of plantations between core patches at Bawangling, Jiaxi-Houmiling and Yinggeling Nature Reserves in accordance with forest protection regulations; establishment of nature reserves in currently unprotected natural forest patches elsewhere in line with the local government's nature reserve expansion policy; and active natural-forest restoration between remaining fragments at Bawangling. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
在澜沧江下游/ 湄公河上游的滇南西双版纳地区,通过样方法比较了热带雨林的连片与3 个小片断的物 种多样性变化趋势。与连续森林比较,片断热带雨林的植物物种丰富度和物种多样性指数都比较低,而且有相当低 比例的大高位芽、中高位芽和附生等生活型植物,而藤本、小高位芽和矮高位芽等生活型植物的比例则较高;泛热 带、热带亚洲至热带非洲的区系成分比例较高,而当地成分则减少;群落的上层树木比下层树木更加稳定。同样,动 物的物种多样性指数和均衡度在片断热带雨林中都较低,与其密切相关的是片断热带雨林的环境质量,而不是片 断的大小。此外,也探讨了片断热带雨林物种变化与森林小气候的关系,阐明了由凉湿向干暖转化的“林内效应"是 其物种变化的重要原因之一。
Resumo:
1. The importance of vertical mixing in modulating the impact of UVR on phytoplankton photosynthesis was assessed in a tropical, shallow lake in southern China from late winter to mid-spring of 2005. 2. Daily cycles of fluorescence measurements (i.e. photosynthetic quantum yield, Y) were performed on both 'static' and in situ samples. Static samples were of surface water incubated at the surface of the lake under three radiation treatments - PAB (PAR + UVR, 280-700 nm), PA (PAR + UV-A, 320-700 nm) and P (PAR, 400-700 nm). In situ samples were collected every hour at three different depths - 0, 0.5 and 1 m. 3. The general daily pattern was of a significant decrease in Y from early morning towards noon, with partial recovery in the afternoon. Samples incubated under static conditions always had lower Y than those under in situ conditions at the same time of the day. 4. Under stratified conditions, no overall impact of UVR impact could be detected in situ when compared with the static samples. Further rapid vertical mixing not only counteracted the impact of UVR but also stimulated photosynthetic efficiency. 5. Based on these measurements of fluorescence, the mixing speed of cells moving within the epilimnion was estimated to range between 0.53 and 6.5 cm min(-1). 6. These data show that mixing is very important in modulating the photosynthetic response of phytoplankton exposed to natural radiation and, hence, strongly conditions the overall impact of UVR on aquatic ecosystems.
Resumo:
In the present paper, sorption, persistence, and leaching behavior of three microcystin variants in Chinese agriculture soils were examined. Based on this study, the values of capacity factor and slope for three MCs variants in three soils ranged from 0.69 to 6.00, and 1.01 to 1.54, respectively. The adsorption of MCs in the soils decreased in the following order: RR > Dha(7) LR > LR. Furthermore, for each MC variant in the three soils, the adsorption rate in the soils decreased in the following order: soil A > soil C > soil B. The calculated half-time ranged between 7.9 and 17.8 days for MC-RR, 6.0-17.1 days for MC-LR, and 7.1-10.2 days for MC-Dha(7) LR. Results from leaching experiments demonstrated that recoveries of toxins in leachates ranged from 0-16.7% for RR, 73.2-88.9% for LR, and 8.9-73.1% for Dha 7 LR. The GUS value ranged from 1.48 to 2.06 for RR, 1.82-2.88 for LR, and 1.76-2.09 for Dha(7) LR. Results demonstrated the use of cyanobacterial collections as plant fertilizer is likely to be unsafe in soils. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The contamination and distribution of polychlorinated dibeinizo-p-dioxins and dibenzofurans (PCDD/Fs) from two agricultural fields of a heavily polluted lake area in China (Ya-Er Lake) are presented. The vertical distribution pattern of total PCDD/Fs in soil cores reveals that the maximum concentration was in the layer of 20-30 cm. The concentrations in the top layer of soil at the two sites were similar (17.48 ng/kg at Site 1 and 18.10 ng/kg at Site 2), but the maximum concentration of Site 1 (120.8 ng/kg) was two times higher than that of Site 2 (64.39 ng/kg). The maximum concentration of PCDD/Fs in mud cores in rice fields (0-50 cm) at Sites 1 and 2 was in the layer of 0-10 cm. The maximum PCDD/F concentration in the top layer in mud at Site 1 (203.1 ng/kg) was higher than that at Site 2: (143.3 ng/kg). Significant correlations were found between the mind PCDD/Fs and the organic carbon content (R = 0.9743, P< 0,05 at Site 1; R = 0.9821, P< 0.05 at Site 2), the two variables being highly correlated (R = 0.9049, P< 0.05, at Site 1; R = 0.9916, P< 0.05 at Site 2). All correlation coefficients were significant at the 95% level. Concentrations were highly correlated with organic carbon, indicating that sorption to organic carbon was the dominant mechanism. Using principal component analysis, the homologue profiles of soil, mud, and plants (rice and radish) were compared. The PCDD/F patterns in plants were found not to be correlated to those in soil and mud. This suggests that atmospheric deposition may be the main source of PCDD/Fs in rice grain. However, mixed exposure involving uptake mechanisms and atmospheric deposition is considered main the source of PCDD/F pollution in radishes. (C) 2002 Elsevier Science (USA).