101 resultados para Aerobic incubation at 4°C, gas chromatography
Resumo:
A model is developed for predicting the resolution of interested component pair and calculating the optimum temperature programming condition in the comprehensive two-dimensional gas chromatography (GC x GC). Based on at least three isothermal runs, retention times and the peak widths at half-height on both dimensions are predicted for any kind of linear temperature-programmed run on the first dimension and isothermal runs on the second dimension. The calculation of the optimum temperature programming condition is based on the prediction of the resolution of "difficult-to-separate components" in a given mixture. The resolution of all the neighboring peaks on the first dimension is obtained by the predicted retention time and peak width on the first dimension, the resolution on the second dimension is calculated only for the adjacent components with un-enough resolution on the first dimension and eluted within a same modulation period on the second dimension. The optimum temperature programming condition is acquired when the resolutions of all components of interest by GC x GC separation meet the analytical requirement and the analysis time is the shortest. The validity of the model has been proven by using it to predict and optimize GC x GC temperature programming condition of an alkylpyridine mixture. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GUMS)and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC x GC/TOFMS), respectively. In the GUMS analysis, serially coupled columns were used. By comparing the GUMS results with GC x GC/TOFMS result,,, many more components in the essential oil could be found within the two-dimensional separation space of GC x GC. The quantitative determination of components in the essential oil was performed by GC x GC with flame ionization detection (FID), using a method of multiple internal standards calibration, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A quantitative analysis of the individual compounds in tobacco essential oils is performed by comprehensive two-dimensional gas chromatography (GC x GC) combined with flame ionization detector (FID). A time-of-flight mass spectrometer (TOF/MS) was coupled to GC x GC for the identification of the resolved peaks. The response of a flame ionization detector to different compound classes was calibrated using multiple internal standards. In total, 172 compounds were identified with good match and 61 compounds with high probability value were reliably quantified. For comparative purposes, the essential oil sample was also quantified by one-dimensional gas chromatography-mass spectrometry (GC/MS) with multiple internal standards method. The results showed that there was close agreement between the two analysis methods when the peak purity and match quality in one-dimensional GC/MS are high enough. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Methomyl, an extremely toxic pesticide, is widely used in agriculture. A strain named mdw-1 capable of degrading methomyl rapidly was successfully isolated from activated sludge in this study. It could utilize methomyl as the sole carbon or nitrogen source. The optimal temperature and medium pH for its growth and methomyl biodegradation were 30 degrees C and 7.0, respectively. It was identified as a Paracoccus sp. according to its morphological features, physiological and biochemical characteristics, and phylogenetic analysis based on the sequence of 16S rDNA. Gas chromatography-mass spectrometry (GC-MS) analysis showed that methomyl could be completely transformed to S-methyl-N-hydroxythioacetamidate in 10 h of incubation with the isolate mdw-1.
Resumo:
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.
Resumo:
Capillary gas chromatographic enantiomer separation of some polar compounds, including alpha-phenylethylamine, styrene oxide, pyrethroid insecticides and other carboxylates, was investigated on modified cyclodextrin (CD) chiral stationary phases. The chiral stationary phases studied included permethylated beta-CD (PMBCD), heptakis (2,6-di-O-butyl-3-O-butyryl)-beta-CD (DBBBCD), heptakis (2,6-di-O-nonyl-3-O-trifluoroacetyl)-beta-CD (DNTBCD), the mixture of PMBCD and DBBBCD, and the mixture of PMBCD and DNTBCD. On the mixed chiral stationary phases containing the mixtures of derivatized cyclodextrins, enantiomer separation was improved significantly for some compounds as compared to the single cyclodextrin derivative chiral stationary phases, and synergistic effects were observed for some compounds on the mixed cyclodextrin derivative chiral stationary phases.
Resumo:
A one-meter long column packed with silica gel is used to separate light hydrocarbons. The silica gel has been modified with several kinds of gas chromatography stationary phases. Among these, PEG 2000 shows fairly good effect when using 80-100 meshes silica gel for the separation of mixture of methane, ethane, ethylene, acetylene, propane, propylene and n-, i-butane. The different behavior of silica gel between batch to batch is also found. When silica gel is coated with a small amount of Al2O3 prepared with sol-gel method, better resolution has been observed on a 2-meter column compared with the non-modified silica gel.
Resumo:
A new method has been developed to describe the quantitative relationship between molecular structures of PCDFs and their gas chromatographic retention indices on a 30-m fused silica column coated with DB-5 stationary phase. The regression equation is derived with a multiple correlation coefficient greater than 0.9995. The highest residual is 20 index units. The standard deviation is less than 7 index units. Using this regression equation, the retention indices of PCDFs for which data is not available have also been predicted. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
Resumo:
A series of experiments were conducted to characterize the self-ignition and combustion of thermally cracked kerosene in both a Mach 2.5 model combustor with a combustor entrance height of 51 mm and a Mach 3.0 model combustor with an entrance height of 70 mm. A unique kerosene heating and delivery system was developed, which can prepare heated kerosene up to 950 K at a pressure of 5.5 MPa with negligible fuel coking. The extent of China no. 3 kerosene conversion under supercritical conditions was measured using a specially designed system. The compositions of gaseous products as a result of thermal cracking were analyzed using gas chromatography. The mass flow rates of cracked kerosene were also calibrated and measured using sonic nozzles. With the injection of thermally cracked kerosene, the ability to achieve enhanced combustion performance was demonstrated under a variety of airflow and fuel conditions. Furthermore, self-ignition tests of cracked kerosene in a Mach 2.5 model combustor over a range of fuel injection conditions and with the help of different amounts of pilot hydrogen were conducted and discussed.
Resumo:
Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg.
Resumo:
本文综述了草原群落土壤呼吸研究的理论、方法、最新进展和主要成果。从2001年6月5日到10月15日,在内蒙古锡林河流域的一个典型草原群落放牧地段用气相色谱法对土壤呼吸进行了测定,并同期观测相应的环境因子,分析了它们之间的相互关系,并根据根系生物量和土壤呼吸的相关性外推出根系呼吸占土壤总呼吸的比例。同时,采用碱液吸收法对该草原群落和一个沼泽化草甸群落的土壤呼吸进行了比对测定,比较在不同生境下土壤呼吸速率的差异。另外,重点比较了两种常用的土壤呼吸测量方法——碱液吸收法和气相色谱法对典型草原群落土壤呼吸的测量效果。主要研究成果如下: 1.在草原群落,生物量(包括地上和地下生物量)、温度(包括气温和土壤温度)和水分及土壤呼吸的季节变化均呈不规则的波动曲线;土壤呼吸与土壤湿度高度相关,与温度尤其是土壤温度以及地下生物量之间存在着一定的相关性,但和地上生物量及绿色生物量之间几乎没有关系。 2.草原群落和草甸群落土壤呼吸的季节动态基本一致,均出现了两个峰值,分别出现在6月底和7月底,它们的变化范围分别为312.8~1738.9 mg C﹒m-2﹒d-1 和 354.6 ~2235.6 mg C﹒m-2﹒d-1,日平均土壤呼吸速率分别为785.9 mg C﹒m-2﹒d-1 和1349.6 mg C﹒m-2﹒d-1,草甸群落的土壤呼吸速率明显高于草原群落; 3.土壤水分是草原群落土壤呼吸的主要限制因子,但对草甸群落的土壤呼吸变化却基本没有影响;草甸群落中,地上总生物量与土壤呼吸速率间没有显著的相关关系,但地上部分绿色生物量与土壤呼吸间存在着显著的幂函数关系,而在草原群落中,土壤呼吸速率与地上活生物量或地上总生物量的相关关系均很弱。 4.在草原群落,根系呼吸占土壤总呼吸的比例为60.7% - 93.3%,平均为82%; 5.碱液吸收法和气相色谱法的测定结果具有很高的相关性(R2=0.7563),它们的季节动态基本一致,变化范围分别为从249.3~1795.1 mg C﹒m-2﹒d-1和从312.8~1738.9 mg C﹒m-2﹒d-1,平均值分别为634.2 mg C﹒m-2﹒d-1和802.7 mg C﹒m-2﹒d-1,碱液吸收法的测量值是气相色谱法的约1.4倍。
Resumo:
To investigate the environmental levels and profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), tree bark samples (n = 22) were collected from Luqiao, an E-waste recycling area, in east China in July 11-13, 2006. The average concentrations of PCDD/Fs, PBDEs, and PCBs determined by isotope dilution-high resolution gas chromatography (HRGC) coupled with high resolution mass spectrometer (HRMS) were 0.1 +/- 0.0, 1.4 +/- 0.2, and 6.5 +/- 0.8 lg g (1) lipid weight, respectively. PCDD/F-toxic equivalent (TEQ, WHO-1998), PCB-TEQs, and total dioxin-like TEQs were 1.3 +/- 0.1, 0.5 +/- 0.0, and 1.8 +/- 0.2 ng g (1) lipid weight, respectively. The profiles of these pollutants in the tree bark were also discussed. Tetra-CDFs, deca-BDE and tri-CBs were the main homologues and accounted for 47% of total PCDD/Fs, 79.3% of total PBDEs, and 33.2% of total PCBs, respectively; As for TEQs, 2,3,4,7,8-PeCDF and PCB126 were the main contributors and accounted for 36% of the total PCDD/F-TEQs and 81.2% of the total PCB-TEQs, respectively. High accumulation of PCDD/Fs, PBDEs, and PCBs detected in the tree bark indicated heavy contaminations of these pollutants in Luqiao area. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Surface sediments and bivalves were collected from the Changjiang Estuary in December 2003 and November 2004, respectively. Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in these samples were measured with high-resolution chromatography (HRGC)/High Resolution Mass Spectrometer (HRMS). The concentrations of total PCDD/Fs and toxic equivalent (TEQ) were 169.83 +/- 119.63 and 0.81 +/- 0.36 pg/g dry weight (dw) in sediments, and 580.33 +/- 240.17 and 7.24 +/- 3.65 pg/g dw in bivalves. The homolog compositions of PCDD/Fs were similar among samples, the most abundant congener was octa-chlorinated dibenzo-p-dioxin (OCDD) and then octa-chlorinated dibenzofuran (OCDF) and 1,2,3,4,6,7,8-hepta-chlorinated dibenzo-p-dioxin (HOCDD). The herbicide pentachlorophenol (PCP) and sodium pentachlorophenol (Na-PCP) were proved the main source of PCDD/Fs in this area.
Resumo:
The seasonal variations of estrogenic compounds and the estrogenicities of influent and effluent were investigated by OF chemical analysis and in vitro assay in a municipal sewage treatment plant in Wuhan (China). The levels of eight estrogenic compounds, including 17 beta-estradiol (E-2) estrone (E-1), estriol (E-3) diethylstilbestrol (DES), 17 alpha-ethinylestradiol, nonylphenol (NP), 4-tert-octylphenol (OP), and bisphenol A (BPA), were measured by gas chromatography-mass spectrometry. Total estrogenic activity of sewage was quantitatively assessed using primary cultured hepatocytes of male Megalobrama amblycephala Yih using vitellogenin as a biomarker. The E-2 equivalents (EEQs) obtained from the chemical analysis were consistent with those measured by bioassay. The natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, as well as NP, were the main contributors of the total EEQs of influent and effluent in the present study. The levels of natural estrogens E-1 and E-3 in the influent and effluent were higher in winter than in summer, whereas the situation for NP and OP was the reverse. The levels of E-2, DES, and BPA varied little among different seasons. 17 alpha-Ethinylestradiol was not detected in the influent and effluent. The estrogenicities of the influent and of the primary and secondary effluents were all higher in summer than in winter. Estrogenic activities in winter mainly originated from natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, whereas the increase of EEQs in summer was contributed by NP The results from chemical analysis and bioassay demonstrate that estrogenic compounds cannot be entirely removed by the existing sewage treatment process, which should be further improved to protect aquatic ecosystems and human health.