47 resultados para Adapt ive template
Resumo:
Well-faceted hexagonal ZnO microprisms with regular interior space have been successfully prepared by a template-free hydrothermal synthetic route. The morphologies of the products depend on the experimental conditions such as the solvent, the concentration of ammonia aqueous solution, and the reaction temperature. Through manipulation of the aging time, the as-prepared ZnO can be controlled as a monodispersed hexagonal twinning solid or as hollow microprisms. Moreover, the evolution process of the hollow ZnO nanoarchitecture after reaction for 2, 6, 12, and 24 h has been investigated by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). A possible growth mechanism has also been proposed and discussed. Furthermore, the photoluminescence (PL) measurement exhibits the unique emitting characteristic of hollow ZnO nanostructures.
Resumo:
A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.
Resumo:
Substantial progress has been made recently in extending the supramolecular assembly of biomimetic structures to vesicle-based sophisticated nanocomposites and mesostructures. We report herein the successful preparation of unilamellar surfactant vesicles coated with a monolayer of ring-shaped {Mo-154} polyoxometalate (POM) nanoclusters, (NH4)(28)[Mo-154 (NO)(14)O(448)Hi(4)(H2O)(70)].approximate to 350H(2)O, by coulomb attractions using preformed didodecyldimethylammonium bromide (DDAB) surfactant vesicles as templates. The resultant vesicle-templated supramolecular assemblies are robust (they do not disintegrate upon dehydration) both at room-temperature ambient and vacuum conditions, as characterized by conventional transmission electron microscopy (TEM) and atomic force microscopy (AFM). The flexibility of the complex soft assemblies was also revealed by AFM measurements. The effect of POM-vesicle coulomb attractions on the dimensions of the templating vesicles was also investigated by using dynamic light scattering (DLS).Although origins of the structure stability of the as-prepared supramolecular assemblies are not clear yet, the nanometer scale cavities and the related properties of macroions of the POM clusters may play an important role in it.
Resumo:
The monodisperse array and nanowires Of Y2O3:Eu3+ phosphor were synthesized using anodic aluminum oxide (AAO) template by sol-gel method. Scanning electron microscope (SEM) images indicated that Y2O3:Eu3+ nanowires are parallelly arranged, all of which are in uniform diameter of about 50 nm. The high-magnification SEM image showed that each nanowire is composed of a lot of agglutinating particles. The patterns of selected-area electron diffraction confirmed that Y2O3:EU3+ nanowires mainly consist of polycrystalline materials. Excitation and emission spectra Of Y2O3:E U3+/AAO composite films were measured. The characteristic red emission peak of EU3+ ion attributed to D-5(0)-->F-7(2) transition in Y2O3:EU3+/AAO nanowires broadened its halfwidth.
Resumo:
A mesostructured cellular foam (MCF) with three-dimensional (313) disordered strutlike structure is prepared by using triblock copolymer (poly(styrene-b-butadiene-b-styrene), SBS, M-W = 140K) as template under strong acid conditions. It is the first report to use triblock copolymer with both hydrophobic head and tail groups instead of hydrophilic head and hydrophobic tail copolymers to synthesize siliceous mesostructured cellular foams. The resulted materials have high pore volume (0.92 cm(3)/g) and relatively narrow pore size distributions with a large pore size of 7.9 nm, which will allow for the fixation of large active complexes, reduce diffusional restriction of reactants and enable reactions involving bulky molecules to take place, especially.
Resumo:
In this paper, a simple route to the fabrication of palladium nanosheets is described. The interaction of palladium chloride (PdCl2) and n-octylamine salt resulted in the formation of a quasi-perovskite-type composite with a layered structure on a molecular scale. This composite can be employed as a template for preparing ultrathin Pd nanosheets when a {PdCl4}(2-) network is reduced in situ by hydrogen in toluene. The x-ray diffraction results indicate that the resulting Pd nanosheets are highly ordered, and they are confined inside the organic matrix as evidenced by high resolution transmission electron microscopy. These Pd nanosheets can be reorganized into layered structures in non-polarized organic solvent when the ordered structure is destroyed. This method of preparing Pd nanosheets is expected to be applicable to other layered organic/inorganic perovskite systems for obtaining the corresponding metal nanosheets.
Resumo:
Eighteen-nanometer gold and 3.5-nm silver colloidal particles closely packed by cetyltrimethylammonium bromide (CTAB) to form its positively charged shell. The DNA network was formed on a mica Substrate firstly. Later, CTAB-capped gold or silver colloidal solutions were cast onto DNA network surface. It was found that the gold or silver nanoparticles metallized networks were formed owing to the electrostatic-driven template assembling of positive charge of CTAB-capped gold and silver particles on the negatively charged phosphate groups of DNA Molecules by the characterizations of AFM, XPS and UV-vis. This method may provide a novel and simple way to studying nanoparticles assembly conjugating DNA molecules and offer some potential promising applications in nanocatalysis, nanoelectronics, and nanosensor on the basis of the fabricated metal nanoparticles network.
Resumo:
Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.
Resumo:
Natural bone is one kind of compounds consisting of hydroxyapatite (HAp) nano-rods, which are embedded in the template of collagen matrix in vivo with the same crystallographic organization. Herein HAp nano-rods precursors were synthesized via wet chemical method. Large-scale HAp nano-wires with the same crystallographic organization as the template of anodic aluminum oxide (AAO) were obtained by the electrophoretic deposition and the technology of the template. It provides a meaningful method to study and understand the information of biological molecules' mineralization process.
Resumo:
A two-armed polymer with a crown ether core self-assembles to produce macroporous films with pores perpendicularly reaching through the film down to the substrate. A possible assembling mechanism is discussed. The pore size can be conveniently adjusted by changing the solution concentration. These through-hole macroporous films provide a template for fabricating an array of Cu nanoparticle aggregates.
Resumo:
A new and simple approach for preparation of Au(111) single-crystal nanoisland - arrayed electrode ensembles, based on fine colloidal Au monolayer-directed seeding growth, is reported.
Resumo:
Mixed monolayer films of octadecylamine (ODA) and oligo-DNA were prepared by Langmuir-Blodgett technique and the monolayer films were used as template to direct the formation of different CdS nanostructures. It was found that CdS nanowire was observed when the monolayer film prepared at low surface pressure was used as template, and aggregate of CdS spheres was obtained when the monolayer film deposited at high surface pressure was used as template.
Resumo:
(100)-oriented NH4MnF3 perovskite with different morphologies have been obtained in situ via an organic template; experimental results can be rationalized in terms of electrostatic interactions and lattice matching between the organic template and the ions undergoing nucleation.