74 resultados para APTAMER-BASED SENSORS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two kinds of polymeric pH indicators PPF (phenolphthalein-formaldehyde product) and CPF (o-cresolphthalein-formaldehyde product) immobilized cross-linked poly(vinyl alcohol) membranes (PPF-PVA and CPF-PVA) for optical intermittent determination of high basicity ([OH-] = 1-8 M) based on a kinetic process were developed. In our previous work, we had demonstrated that PPF-PVA and CPF-PVA could perform the determination of high pH values from pH 10.0 to 14.0. Here the discoloring kinetic behaviors of PPF-PVA and CPF-PVA were compared with those of free phenolphthalein, o-cresolphthalein and thymolphthalein. Experimental results and theoretical analysis indicated that the response behaviors of the optodes' membranes in concentrated NaOH solutions were diffusion-independent and still complied with the pseudo-first-order kinetics. In addition, two data analysis methods for determination were presented. One was directly based on the reduced absorbance: the other was based on the discoloring kinetic constant. It was found that the latter could perform a rapid (60 s) and reliable (relative standard deviation: 2.6%) determination for high basicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel kind of K+ sensor with valinomycin-incorporated bilayers supported on a gold electrode consisting of self-assembled alkanethiol monolayers (SAMs) and a lipid monolayer has been fabricated successfully. The lipid monolayer is deposited on the alkylated surface of the first alkanethiol monolayer through three different methods, such as the Langmuir-Blodgett (LB) technique, painted method and painted-frozen method. The response of K + sensors produced by a painted or painted-frozen lipid monolayer on an alkanethiol alkylated gold electrode is larger than that by the LB method, which is due to the difference in fluidity of the three kinds of bilayers. Selectivity coefficients KK+, Na+, KK+, Li+, KK+, Ca2+ and KK+, Mg2+ are 10(-4), 10(-4), 2 x 10(-5) and 3 x 10(-5) respectively, and there is no obvious difference among different fabricating methods. A linear response toward the potassium ion was found in the range from 10(-1) M to 10(-5) M with the detection limit of 10(-6) M. The sensor has a slope of 60 mV per decade. Meanwhile, the longevity of the sensor was improved obviously for at least two months at about -10 degrees C. The higher stability shows the possibility to fabricate a practical biosensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environment temperature has inevitable effects on property of the convect ion-based tilt sensors. It not only redefines the application, but also prevents the improvement of the sensor performance. Numerical simulation of the fluid flow in the chamber of a sensor was performed and the influence of the environment temperature was studied in this paper. At zero tilt angle, the temperature distribution along the perpendicular line cross the heat source at various environment temperatures was presented. It was found that the flow varied dramatically at different environment temperatures, which would cause the output signal vary accordingly, even when the tilt angle was kept at a constant, because this device works by sensing the change of flow. At the same condition, we present the numerical results when the temperature difference across the heat source and the environment was kept at the same, in those results, it was found that the temperature difference at every point along the perpendicular line cross the heat source keep the same, this result confirms the similarity principle of nature convection. Second, A method of eliminating environment temperature infect on property of convect ion-based tilt sensor, which is based on the theory of flow similarity, is proposed. It was found that a thermal transistance can be piped on the circuit of heat source to compensate the temperature of the heat source. A compensative circuit was specially designed which can keep flow similarity by changing heat source temperature in order to eliminate the influence of environment temperature. The experiment results show that above 70% temperature drift can be eliminated by this compensative circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations were employed to explore the gas-sensing mechanisms of zinc oxide (ZnO) with surface reconstruction taken into consideration. Mix-terminated (10 (1) over bar0) ZnO surfaces were examined. By simulating the adsorption process of various gases, i.e., H-2, NH3, CO, and ethanol (C2H5OH) gases, on the ZnO (10 (1) over bar0) surface, the changes of configuration and electronic structure were compared. Based on these calculations, two gas-sensing mechanisms were proposed and revealed that both surface reconstruction and charge transfer result in a change of electronic conductance of ZnO. Also, the calculations were compared with existing experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two fiber grating sensors for high-temperature measurements are proposed and experimentally demonstrated. The interrogation technologies of the sensor systems are all simple, low cost but effective. In the first sensor system, the sensor head is comprised of one fiber Bragg grating (FBG) and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured based on the wavelength-shifts of the FBG induced by the strain. In the second sensor system, a long-period fiber grating (LPG) is used as the high-temperature sensor head. The LPG is very-high-temperature stable CO2-Aaser-induced grating and has a linear function of wavelength-temperature in the range of 0 - 800 degrees C. A dynamic range of 0 - 800 degrees C and a resolution of 1 degrees C have been obtained by either the first or the second sensor system. The experimental results agree with theoretical analyses. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed study on analyzing the crosstalk in a wavelength division multiplexed fiber laser sensor array system based on a digital phase generated carrier interferometric interrogation scheme is reported. The crosstalk effects induced by the limited optical channel isolation of a dense wavelength division demultiplexer (DWDM) are presented, and the necessary channel isolation to keep the crosstalk negligible to the output signal was calculated via Bessel function expansion and demonstrated by a two serial fiber laser sensors system. Finally, a three-element fiber laser sensor array system with a 50-dB channel-isolation DWDM was built up. Experimental results demonstrated that there was no measurable crosstalk between the output channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National High Technology Research and Development Program of China 2007AA03Z112;Program of Ministry of Education of China 20060183030;Program of Jilin Provincial Science and Technology Department of China 20070709;Program of Bureau of Science and Technology of Changchun City 2007107

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biosensor based on an H+ ion sensitive field effect transistor (H+-ISFET) and penicillin G acylase has been developed. The response time of the sensor to different concentrations of penicillin G was 30 s. In a 20 mM phosphate buffer at pH 7.0, the linear range of the calibration curve was from 0.5 to 8 mM. The coefficients of variation for three samples with 20 repeated measurements were below 5%. Stability of the sensor could reach about 6 months and more than 1000 runs were performed without a significant decrease of the output value. The sensor was tested for measurement of the penicillin G content in penicillin fermentation broth. Forty samples with low and high concentrations of penicillin G were chosen for the correlation test. The values assayed by the sensor method were compared with the values assayed by HPLC method, the correlation coefficient (r) was 0.9944 and the regression equation was y = 1.034X - 2083.7 respectively. The different measuring methods are discussed in the text. (C) 1998 Published by Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic principle and critical characteristics of unattended ground sensors (UGS) based on fiber optic disk accelerometers are introduced. Mechanical principles of fiber optic disk accelerometers (FODA) and calculation methods are presented. An FODA with a high sensitivity of 120rad/g and a resonance frequency of 300Hz is designed and used for detection in military affair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.