224 resultados para ALUMINUM PHOSPHIDE CLUSTERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on the interactions of high intensity (similar to 10(16) W/cm(2)) femtosecond laser pulses with rare gas clusters in a dense jet is performed. Energy absorption by Ar and Xe clusters is measured and it can be as high as 90%. Very energetic ions produced in the laser interaction with a dense cluster jet are detected by time-of-flight spectrometry and the maximum ion energy of Xe is up to 1.3 MeV. The average ion energies are found to increase with increasing cluster size and get saturated gradually. The average ion energies also show a strong directionality and the average ion energy in the direction parallel to the laser polarization vector is 40% higher than that perpendicular to it. The findings are discussed in terms of a model of charge-dependent ion acceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subclusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the case of homonuclear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuclear clusters with larger sizes are required to achieve a greater neutron yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pure Coulomb explosions of the methane clusters (CA(4))(n), (light atom A = H or D) have been investigated by a simplified electrostatic model for both a single cluster and an ensemble of clusters with a given cluster size distribution. The dependence of the energy of ions produced from the explosions on cluster size and the charge state of the carbon ions has been analysed. It is found that, unlike the average proton energy which increases with the charge q of the carbon ions, the average deuteron energy tends to saturate as q becomes larger than 4. This implies that when the laser intensity is sufficiently high for the (CD4)(n) to be ionized to a charge state of (C4+D4+)(n), the neutron yield from a table-top laser-driven Coulomb explosion of deuterated methane clusters (CD4)(n) could be increased significantly by increasing the interaction volume rather than by increasing the laser intensity to produce the higher charge state (C6+D4+)(n). The flight-time spectra of the carbon ions and the light ions have also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)(n)) in a gas jet subjected to intense femtosecond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average energies of deuterons produced in the laser-cluster interaction were 60 and 1.5 KeV, respectively. From DD collisons of energetic deuterons, a yield of 2.5(+/-0.4)x10(4) fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 x 10(5) per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy ion emission from intense-ultrashort (30fs) laser-pulse- cooled deuterium-cluster (80K) interaction is measured. The deuterium ions have an average energy 20keV, which greatly exceeds Zweiback's expectation [Phys. Rev. Lett. 84 (2000) 2634]. These fast deuterium ions can be used to drive fusion and have a broad prospect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the maximum and average energies of protons, which were produced in the interaction of an intense laser pulse (similar to 1 x 10(16) W cm(-2), 65 fs) with hydrogen clusters in a gas jet backed up to 80 bar at liquid nitrogen temperature (similar to 80 K), on the backing pressure has been studied. The general trend of the proton energy dependence on the square of the average cluster radius, which is determined by a calibrated Rayleigh scattering measurement, is similar to that described by theory under the single size approximation. Calculations are made to fit the experimental results under a simplified model by taking into account both a log-normal cluster size distribution and the laser intensity attenuation in the interaction volume. A very good agreement between the experimental proton energy spectra and the calculations is obtained in the high- energy part of the proton energy distributions, but a discrepancy of the fits is revealed in the low-energy part at higher backing pressures which are associated with denser flows. A possible mechanism which would be responsible for this discrepancy is discussed. Finally, from the fits, a variation of the cluster size distributions was revealed to be dependent on the gas backing pressure as well as on the evolving time of the gas flow of clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two overrun effects in the Coulomb explosion dynamics of heteronuclear clusters have been investigated theoretically by the use of a simplified electrostatic model. When the charge-to-mass ratio of light ions is higher than that of heavy ions, the light ions can overtake the heavy ions inside the cluster and acquire a higher kinetic energy. Further, if the charge density of the heavy ions is twice as high as that of the light ions, i.e. a proposed competitive parameter xi = rho BqB/rho AqA > 2, the inner light ions can overtake those light ions on the surface of the cluster and form a shock shell during the explosion, which might drive the intracluster collision and fusion of the light ions. Different regimes of nuclear fusion are discussed and the corresponding neutron yields are estimated. Our analysis indicates that the probability of intracluster fusion is quite low even if deuterated heteronuclear clusters such as (DI)(n) with large size and high competitive parameter are employed. However, heteronuclear clusters are still a better candidate compared with homonuclear clusters for enhancing the total intercluster fusion yield because both a higher energy region and a higher proportion of deuterons distributing in the energy region can be created in the deuterated heteronuclear clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nd3+ -codoped and Al3+-Nd3+-codoped high silica glasses have been prepared by sintering nanoporous glasses impregnated with Nd3+ stop and Al3+ ions. The Judd-Ofelt intensity parameters Omega(2,4,6) of Nd3+-doped high silica glasses were obtained and used to analyze aluminum codoping effects. Fluorescence properties of Nd3+-doped high silica glasses strongly depend on the Al3+ concentration. While Nd3+ ion absorption and emission intensities of obviously increase when aluminum is added to Nd3+-doped high silica glasses, fluorescence lifetimes decrease and aluminum codoping has almost no influence on the radiative quantum efficiencies. This indicates that aluminum codoping is responsible for an anti-quenching effect through a local modification of rare-earth environments rather than through physical cluster dispersion.