76 resultados para ABSORPTION-SPECTROSCOPY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

应用混合酸HNO3-HClO4(4∶1)在常压微沸条件下对膜荚黄芪根系及茎叶样品进行消解,采用原子吸收光谱法测定了膜荚黄芪不同器官即根及茎叶中五种人体必需矿质元素K,Fe,Zn,Mn和Cu含量,并对结果进行了统计分析与比较。该方法标准曲线相关系数为0.997 3~0.999 9,加标回收率为92.88%~109.25%,相对标准偏差(RSD,n=5)为0.393 5%~3.175 2%。方法简单,结果可靠。结果显示,膜荚黄芪根及茎叶中5种矿质元素含量顺序均为K>Fe>Zn>Mn>Cu。膜荚黄芪不同器官矿质元素含量不同,根中富含Fe,Zn,Cu元素,根内Fe含量是茎叶的1.54倍。茎叶中也含有丰富的矿质元素,特别是K和Mn元素。茎叶中K含量是根的1.63倍,这与黄芪的药效相符合。试验结果将为研究矿质元素在黄芪植株中的分布以及矿质元素含量与黄芪药效相关性提供理论依据。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives, P1 and P2, have been successfully synthesized through the Witting-Horner reaction. The structures and properties of the monomers and the resulting polymers were characterized by using H-1 NMR, FT-IR, GPC, TGA, UV-vis absorption spectroscopy, cyclic voltammetry (CV) and electroluminescence (EL) spectroscopy

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)(6)](3-) and KCl. Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer-by-layer technique. The thus-prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mercury ion (Hg2+) is able to specifically bind to the thymine-thymine (T-T) base pair in a DNA duplex, thus providing a rationale for DNA-based selective detection of Hg2+ with various means. In this work, we for the first time utilize the Hg2+-mediated T-T base pair to modulate the proper folding of G-quadruplex DNAs and inhibit the DNAzyme activity, thereby pioneering a facile approach to sense Hg2+ with colorimetry. Two bimolecular DNA G-quadruplexes containing many T residues are adopted here, which function well in low- and high-salt conditions, respectively. These G-quadruplex DNAs are able to bind hemin to form the peroxidase-like DNAzymes in the folded state. Upon addition of Hg2+, the proper folding of G-quadruplex DNAs is inhibited due to the formation of T-Hg2+-T complex. Ibis is reflected by the notable change of the Soret band of hemin when investigated by using UV-vis absorption spectroscopy. As a result of Hg2+ inhibition, a sharp decrease in the catalytic activity toward the H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) is observed, accompanied by a change in solution color. Through this approach, aqueous Hg2+ can be detected at 50 nM (10 ppb) with colorimetry in a facile way, with high selectivity against other metal ions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. The calculated results were compared with previous theoretical and experimental studies. Ground states for each molecule were assigned. It was found that for some molecules, low-lying state, in which the energy is much close to the ground state, was obtained. In this case, further studies both experimentally and theoretically are necessary in order to find the true global minimum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry. Compared with the adsorption of Cyt c on DNA monolayer, this composite multilayer film can obviously enhance the amount of immobilized Cyt c confirmed by SPR reflectivity-incident angle (R-theta) curves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrostatic layer-by-layer assembly method was successfully used in a multilayer buildup of polyaniline (PANT) and platinum nanocrystals encapsulated in the carboxyl-terminated poly(amidoamine) dendrimers (generation 4.5 G4.5COOH) (Pt-G4.5COOH NPs) on solid substrates. Multilayer growth was monitored by ultraviolet-visible (UV-vis) absorption spectroscopy. The AFM observation revealed a molecularly smooth (PANI/Pt-G4.5COOH NPs) multilayer film which is rougher and thicker than the multilayer of PANT and G4.5COOH (G4.5COOH/PANI)(m). The PANI/Pt-G4.5COOH NPs multilayers show a fast surface-confined electron-exchange process at the Au electrode in an acid solution, and remains stable, reversible and electroactive, even in neutral solution. Furthermore, the multilayers show a strong elect rocatalytic response towards CO oxidation and O-2 reduction, and the catalytic capability can be easily tuned by the control of multilayer thickness.