72 resultados para 330.1[82]
Resumo:
采用2种不同夏玉米基因型(陕单9号,抗旱品种;陕单911,不抗旱品种)的盆栽试验,研究了长期水分胁迫下氮、钾对各生育期叶片净光合速率、蒸腾速率、胞间二氧化碳浓度和叶绿素含量的影响,旨在从光合生理特性揭示这些因子的抗旱机理。结果表明,长期水分胁迫下叶片净光合速率,蒸腾速率、胞间二氧化碳浓度(除成熟期)和叶绿素含量显著降低,不抗旱品种降幅更甚。抗旱品种的净光合速率和叶绿素含量大于不抗旱品种,而蒸腾速率和胞间二氧化碳浓度则相反。两品种苗期光合作用较弱,净光合速率和叶绿素含量均较低,抽雄期达到高峰。施氮能不同程度降低水分胁迫下玉米叶片的蒸腾速率,增加叶绿素含量.提高净光合速率,从而减缓水分胁迫对光合作用的伤害。随氮肥用量增加,不抗旱品种净光合速率和叶绿素含量显著升高,蒸腾速率和胞间二氧化碳浓度明显降低,两种氮肥用量间有显著差异;抗旱品种在低氮用量时效果显著,但高低氮用量间无显著区别。钾对受水分胁迫的玉米表现出比氮肥更突出的效果。相反,在适量供水条件下,氮、钾肥的作用明显下降。以上结果表明,适当用量的氮、钾肥可以有效地改善水分胁迫下作物叶片的光合特性,从而增强作物的抗旱性。
Resumo:
Small signal equivalent circuit model and modulation properties of vertical cavity-surface emitting lasers (VCSEL's) are presented. The modulation properties both in analytic-equation calculation and in circuit model simulation are studied. The analytic-equation calculation of the modulation properties is calculated by using Mathcad program and the circuit model simulation is simulation is simulated by using Pspice program respectively. The results of calculation and the simulation are in good agreement with each other. Experiment is performed to testify the circuit model.
Resumo:
Using the slow highly charged ions Xe-129(q+) (q = 25, 26, 27; initial kinetic T-0 <= 4.65 keV/a.u.) to impact Au surface, the Au atomic M alpha characteristic X-ray spectrum is induced. The result shows that as long as the charge state of projectile is high enough, the heavy atomic characteristic X-ray can be effectively excited even though the incident beam is very weak (nA magnitude), and the X-ray yield per ion is in the order of 10(-8) and increases with the kinetic energy and potential energy of projectile. By measuring the Au M alpha-X-ray spectra, Au atomic N-level lifetime is estimated at about 1.33x10(-18) s based on Heisenberg uncertainty relation.
Resumo:
以武汉市桃花岛塘和复合潜流人工湿地组合生态处理系统为研究对象,考察了对城市地表径流的处理效果。结果表明,塘和复合潜流人工湿地组合生态系统可以有效净化城市地表径流,对各污染物的去除率:COD为84.0%~85.4%、TP为89.6%~91.8%、TN为92.2%~94.4%、SS为95.8%~97.1%,其中复合潜流人工湿地对COD、TP、TN、SS的去除率分别为69.0%~73.1%、82.6%~86.6%、89.0%~90.4%、64.7%~69.2%,除氮效果独特。在无雨期该生态系统可用于净化湖水,实现了削减污染和保持系统稳定的双重功能,同时还可补给养鱼塘用水。
Resumo:
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
研究结果表明不同坡度谷子地 ,高 N处理小区径流中铵态氮、硝态氮和有效氮浓度平均为 1.0 6、0 .76和1.82 mg/kg,低 N分别为 0 .6 4、1.2 9和 1.93mg/kg;高氮处理土壤铵态氮、硝态氮和有效氮平均流失量分别达到17.90、12 .93和 30 .84kg/(km2 · a) ,低 N流失量为 11.90、2 3.86和 35 .77kg/(km2 · a)。高氮处理小区泥沙中有机质和全氮浓度平均为 5 .2 1和 0 .5 36 g/kg,而低氮处理分别为 4.94和 0 .481g/kg;高氮和低氮处理土壤有机质流失量分别为 5 70 2和 5 743kg/(km2 · a) ,土壤全氮流失量为 498和 5 5 9kg/(km2 · a)