39 resultados para 118-733
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We propose a novel communication technique which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. The communication capacity is increased by exploiting the optical spatial bandwidth resources. An optimum detector for this communication is proposed based on maximum-likelihood decision. The fundamental rule of designing signal spatial pattern is formulated from analysis of the probability of error decision. Finally, we present a typical electro-optical system scheme of the proposed communication. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Among different phase unwrapping approaches, the weighted least-squares minimization methods are gaining attention. In these algorithms, weighting coefficient is generated from a quality map. The intrinsic drawbacks of existing quality maps constrain the application of these algorithms. They often fail to handle wrapped phase data contains error sources, such as phase discontinuities, noise and undersampling. In order to deal with those intractable wrapped phase data, a new weighted least-squares phase unwrapping algorithm based on derivative variance correlation map is proposed. In the algorithm, derivative variance correlation map, a novel quality map, can truly reflect wrapped phase quality, ensuring a more reliable unwrapped result. The definition of the derivative variance correlation map and the principle of the proposed algorithm are present in detail. The performance of the new algorithm has been tested by use of a simulated spherical surface wrapped data and an experimental interferometric synthetic aperture radar (IFSAR) wrapped data. Computer simulation and experimental results have verified that the proposed algorithm can work effectively even when a wrapped phase map contains intractable error sources. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, we propose a novel three-dimensional imaging method by which the object is captured by a coded cameras array (CCA) and computationally reconstructed as a series of longitudinal layered surface images of the object. The distribution of cameras in array, named code pattern, is crucial for reconstructed images fidelity when the correlation decoding is used. We use DIRECT global optimization algorithm to design the code patterns that possess proper imaging property. We have conducted primary experiments to verify and test the performance of the proposed method with a simple discontinuous object and a small-scale CCA including nine cameras. After certain procedures such as capturing, photograph integrating, computational reconstructing and filtering, etc., we obtain reconstructed longitudinal layered surface images of the object with higher signal-to-noise ratio. The results of experiments show that the proposed method is feasible. It is a promising method to be used in fields such as remote sensing, machine vision, etc. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A cascaded Fresnel digital hologram (CFDH) is proposed, together with its mathematical derivation. Its application to watermarking has been demonstrated by a simulation procedure, in which the watermark image to be hidden is encoded into the phase of the host image. The watermark image can be deciphered by the CFDH setup, the reconstructed image shows good quality and the error is almost closed to zeros. Compared with previous technique, this is a lensless architecture, which minimizes the hardware requirement. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Hexagonal array is a basic structure widely exists in nature and adopted by optoclectronic device. A phase plate based on the fractional Talbot effect that converts a single expanded laser beam into a regular hexagonal array of uniformly illuminated apertures with virtually 100% efficiency is presented. The uniform hexagonal array illumination with a fill factor of 1/12 is demonstrated by the computer simulation. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The anisotropic Bragg diffraction of the volume holographic gratings in photorefractive crystals are investigated based on the model of anisotropic coupled-wave theory. The effect of the initial intensity ratio and the recording angles of the two recording waves on the anisotropic Bragg diffraction properties is discussed. It is shown that both the ratio of the initial intensity and the incident angles of the recording waves are selective action for the anisotropic Bragg diffraction efficiency of the volume holographic gratings, while these two recording conditions are not selective action for the isotropic Bragg diffraction. Furthermore, the Bragg phase matching condition of anisotropic diffraction is analyzed when the recording angles change. (C) 2006 Elsevier GmbH. All rights reserved.
Anisotropic Bragg diffraction of finite-sized volume holographic grating in photorefractive crystals
Resumo:
Anisotropic diffraction of uniform plane wave by finite-sized volume holographic grating in photorefractive crystals is considered. It is found that the anisotropic diffraction can take place when some special conditions are satisfied. The diffracted image is obtained in experiment for the anisotropic Bragg diffraction in Fe:LiNbO3 crystals. A coupled wave analysis is presented to study the properties of anisotropic diffraction. An analytical integral solution for the amplitudes of the diffracted beams is submitted. A trade off between high diffraction efficiency and the deterioration of reconstruction fidelity is analyzed. Numerical evaluations also show that the finite-sized anisotropic volume grating exhibits strong angular and wavelength selectivity. All the results are useful for the optimizing design of VHOE based on finite-sized volume grating structures. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
When noises considerations are made, nonredundant arrays (NRAs) are endowed with many advantages which other arrays e.g., uniformly redundant arrays (URAs) do not possess in applications of coded aperture imaging. However, lower aperture opening ratio limits the applications of NRA in practice. In this paper, we present a computer searching method based on a global optimization algorithm named DIRECT to design NRAs. Compared with the existing NRAs e.g., Golay's NRAs, which are well known and widely used in various applications, NRAs found by our method have higher aperture opening ratio and auto correlation compression ratio. These advantages make our aperture arrays be very useful for practical applications especially for which of aperture size are limited. Here, we also present some aperture arrays we found. These aperture arrays have an interesting property that they belong to both NRA and URA. (C) 2006 Elsevier GmbH. All rights reserved.