493 resultados para photoluminescence spectrum
Resumo:
A facile and efficient strategy for the syntheses of novel hyperbranched poly(ether amide)s (HPEA) from multihydroxyl primary amines and (meth)acryloyl chloride has been developed. The chemical structures of the HPEAs were confirmed by IR and NMR spectra. Analyses of SEC (size exclusion chromatography) and viscosity characterizations revealed the highly branched structures of the polymers obtained. The resultant hyperbranched polymers contain abundant hydroxyl groups. The thermoresponsive property was obtained from in situ surface modification of abundant OH end groups with N-isopropylacrylamide (NIPAAm). The study oil temperature-dependent characteristics has revealed that NIPAAm-g-HPEA exhibits an adjustable lower critical solution temperature (LCST) of about 34-42 degrees C depending on the grafting degree. More interestingly, the work provided an interesting phenomenon where the HPEA backbones exhibited strong blue photoluminescence.
Resumo:
Phosphate long lasting phosphorescence (LLP) phosphors with composition of (Zn1-xTmx)(2)P2O7 were prepared by the high-temperature solid-state method. Their properties were systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. These phosphors emit blue light that is related to the characteristic emission due to the D-1(2)-H-3(6), D-1(2)-H-3(4) and (1)G(4)-H-3(6) transitions of Tm3+. After the UV light excitation source was switched off, the bright blue long lasting phosphorescence can be observed which could last for more than 1 h in the limit of light perception of dark-adapted human eyes (0.32 mcd/m(2)). Two TL peaks at 336 K and 415 K appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.67 eV and 0.97 eV, respectively.Also, the mechanism was discussed in this report.
Resumo:
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+, Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f(6)5d(1)-S-8(7/2) transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.
Resumo:
Large-scale GdVO4:Eu3+ nanowires with diameters of about 15 nm and lengths of several micrometers were achieved by a facile hydrothermal method in the presence of disodium ethylenediamine tetraacetate (Na2H2L). The influences of several parameters, such as pH value, reaction temperature, and molar ratio of Na2H2L to Gd3+ on the final products were investigated. The formation mechanism of the as-obtained GdVO4:Eu3+ nanowires is proposed on the basis of time-dependent experiments. It is found that the organic additive Na2H2L, which acts as a shape modifier, has a dynamic effect by adjusting the growth rates of different facets, resulting in the formation of the GdVO4:Eu3+ nanowires. The luminescent spectrum of GdVO4:Eu3+ nanowires shows the strong characteristic dominant emission of the Eu3+ ions at 614 nm.
Resumo:
Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.
Resumo:
The Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ phosphors were prepared by solid-state reaction process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) as well as lifetimes, was utilized to characterize the resulting phosphors. Under the excitation of ultraviolet light, the Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ show the characteristic emissions of Eu3+ (D-5(0)-F-7(1,2,3) transitions dominated by D-5(0)-F-7(1) at 593 nm) and Dy3+ (F-4(9/2)-H-6(15/2),(13/2) transitions dominated by F-4(9/2)-H-6(15/2) at 494 nm), respectively. The incorporation of Li+ ions into the Ba2GdNbO6: Eu3+/Dy3+ phosphors has enhanced the PL intensities depending on the doping concentration of Li+, and the highest emission was obtained in Ba2Gd0.9NbO6: 0.10Eu(3+), 0.01Li(+) and Ba2Gd0.95NbO6: 0.05Dy(3+), 0.07Li(+), respectively. An energy level diagram was proposed to explain the luminescence process in the phosphors.
Resumo:
Blue emitting GdNbO4: Bi3+ powder phosphors for field emission displays were prepared by a solid state reaction. Both photoluminescence and cathodoluminescence properties of the materials were investigated. GdNbO4 itself shows only a very weak luminescence in the blue spectral region. By doping Bi3+ in GdNbO4, the luminescence intensity was improved greatly. The emission spectrum of the GdNbO4: Bi3+ consists of a broad band with maximum at 445 nm (lifetime = 0.74 mu s; CIE chromaticity coordinates: x = 0.1519 and y = 0. 1196) for both UV and low voltage (1-7 kV) cathode ray excitation. In GdNbO4:Bi3+ phosphors, the energy transfer from NbO43- to activator Bi3+ occurred.
Resumo:
Herein we report a new method to collect a qualified infrared spectrum of a solute in solution by two solvent cells with different thickness during background single-beam spectrum scanning. By collecting the background spectrum with two cells (two stages), we successfully achieved accurate solvent compensation between a sample and a reference, namely, the solvent amounts in the sample and background measurements could become congruent. Therefore, the solvent bands were thoroughly suppressed in the infrared spectrum and a qualified spectrum of the solute was obtained.
Resumo:
The photoluminescence (PL) and electroluminescence (EL) properties of a samarium complex Sm(TTA)(3)phen (TTA = 2-thenoyltri-fluoroacetonate, phen = 1, 10-phenanthroline) were investigated. The results show that Sm(TTA)3phen could be used as promising luminescent and electron transporting material in the electroluminescent devices. The difference between PL and EL spectra was noticed and discussed. Besides, it is noteworthy that the choice of the hole transporting layer (HTL) showed significant effect on the device performance, which was explained by the low-lying highest occupied molecular orbit (HOMO) level of Sm(TTA)3phen and the different hole injection barrier at the HTL/EML (emitting material layer) interface.
Resumo:
It has been found that charge compensated CaMoO4:Eu3+ phosphors show greatly enhanced red emission under 393 and 467 nm-excitation, compared with CaMoO4:Eu3+ without charge compensation. Two approaches to charge compensation, (a) 2Ca(2+) -> EU3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Ca(2+) -> 2EU(3+) + vacancy, are investigated. The influence of sintering temperature and Eu3+ concentration on the luminescent property of phosphor samples is also discussed.
Resumo:
Organic photovoltaic cells with a strong absorption spectrum in the near infrared region were fabricated with the structure of indium tin oxide (ITO)/zinc phthalocynine (ZnPc)/lead phthalocynine (PbPc)/C-60/Al. PbPc has a broad and strong absorption, while the organic films of PbPc/C-60 showed an additional new absorption peak at 900 nm. The absorption in the near infrared region can harvest more photons to invert into photocurrent. Moreover, the introduction of ZnPc thin layer between ITO and PbPc further improved the new absorption peak and the collection of hole carriers at the electrode ITO, which increased the power conversion efficiencies to 1.95% and short-circuit current density to 9.1 mA/cm(2) under AM 1.5 solar spectrum.
Resumo:
LaF3 : Eu3+ (5.0 mol-% EU3+) nanodisks with perfect crystallinity were successfully synthesized by a simple method. The synthesis was carried out in an aqueous solution at room temperature without the use of templates or organic additives, The mechanism of formation of the nanodisks was explored, and the fluoride source (KBF4) is believed to play a key role in controlling the morphology of the final product. Furthermore, the size of the disk can be simply moderated by varying the concentration of the initial reactants. The room-temperature photoluminescence of LaF3 : Eu3+ with different morphologies and sizes were also investigated, and the results indicate that the emission intensity of the product is strongly affected by their size, shape, and other factors.
Resumo:
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.