425 resultados para Quantum Hall effect
Structural and infrared absorption properties of self-organized InGaAs GaAs quantum dots multilayers
Resumo:
Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.
Resumo:
The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.
Resumo:
Probing in-medium nucleon-nucleon (NN) cross section sigma(1)(NN)(alpha) in heavy ion collisions has been investigated by means of the isospin-dependent quantum molecular dynamics (IQMD) with the isospin- and momentum- dependent interaction (IMDI(tau)). It is found that there are the very obvious medium effect and the sensitive isospin- dependence of nuclear stopping R on the in-medium NN cross section sigma(1)(NN)(alpha) in the nuclear reactions induced by halo-neutron projectile and the same-mass stable projectile. However, R induced by the neutron-halo projectile is obviously lower than that induced by the corresponding stable projectile. In particular, there is a very obvious dependence of R on the medium effect of sigma(1)(NN)(alpha) in the whole beam energy region for the above two kinds of projectiles. Therefore, the comparison between the results of R's in the reactions induced by the neutron-halo projectile and the corresponding same-mass stable projectile is a more favourable probe for extracting the information of sigma(1)(NN)(alpha) because of adding a new judgement.
Resumo:
The medium effect of nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two central nuclear reactions Ca-40+Ca-40, Ca-60+Ca-60. within isospin-dependent quantum molecular dynamics at beam energies from 40 to 50 MeV/nucleon. It is found that there is the very obvious medium effects of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) on the isoscaling parameters a. In this case the isoscaling parameter a is a possible probe of the medium effect of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) in the heavy ion collisions. The mechanism of the above-mentioned properties is studied and discussed.
Resumo:
We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.
Resumo:
An isospin-dependent quantum molecular dynamical model (IQMD) is developed, with the isospin degree of freedom in the momentum-dependent interaction(MDI) included in IQMD, to obtain an isospin- and momentum-dependent interaction (IMDI) in IQMD. We investigate the effect of IMDI on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the IMDI induces the significant reductions in the isospin fractionation ratio for all of beam energies, impact parameters, neutron-proton ratios and mass number of colliding systems. However, the strong dependence of isospin fractionation ratio on the symmetrical potential is preserved, with the isospin degree of freedom included in the MDI, i.e. the isospin fractionation ratio is still a good probe for extracting the information about the equation of state of isospin asymmetrical nuclear matter.
Resumo:
The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
In this contribution, common vegetable oils are used as coordination solvents for synthesis of high quality CdSe nanocrystals. Various shaped nanocrystals (quantum dots, quantum rods, multipods, arc structure, etc.) can be produced free of alkylphosphonic acids. Shape evolution can be induced by three types of selenium precursors: ODE-Se, VO-Se and TOP-Se (ODE, 1-octadecene; VO, vegetable oil; TOP, trio-n-octylphosphine). The quantum yields of NCs are 15-40%. The full width at half-maximum (fwhm) of the photoluminescence spectra are 27 +/- 1 nm for quantum clots and 23 +/- 1 nm for quantum rods/multipods.
Resumo:
In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.
Resumo:
A series of heteroleptic green iridium dendrimers functionalized with carbazole dendrons, such as G2(pic) and G2(acac), have been synthesized, in which picolinic acid and acetylacetone are used as the ancillary ligands, respectively. Compared with the corresponding homoleptic iridium dendrimer G2 (8%), these heteroleptic ones can be prepared under mild conditions with total yields as high as 55-67%. Both the dendrimer G2(pic) and G2(acac) display bright green emissions with photoluminescence quantum yields higher than 0.80 in toluene solution. As a result, a maximum external quantum efficiency of 7.1% (21.0 cd/A) for G2(pic) and 7.7% (25.8 cd/A) for G2(acac) has been realized based on non-doped device configuration. The state-of-art performance indicates that the heteroleptic dendrimers can be promising candidates used for non-doped electrophosphorescent devices, especially when the ease of synthesis in a large scale is considered.
Resumo:
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.
Resumo:
A simple, sensitive fluorescent method for detecting cyanide has been developed based on the inner filter effect (IFE) of silver nanoparticles (Ag NPs). With a high extinction coefficient and tunable plasmon absorption feature, Ag NPs are expected to be a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In the present work, we developed a turn-on fluorescent assay for cyanide based on the strong absorption of Ag NPs to both excitation and emission light of an isolated fluorescence indicator. In the presence of cyanide, the absorber Ag NPs will dissolve gradually, which then leads to recovery of the IFE-decreased emission of the fluorophore. The concentration of Ag NPs in the detection system was found to affect the fluorescence response toward cyanide greatly. Under the optimum conditions, the present IFE-based approach can detect cyanide ranging from 5.0 x 10 (7) to 6.0 x 10 (4) M with a detection limit of 2.5 x 10 (7) M, which is much lower than the corresponding absorbance-based approach and compares favorably with other reported fluorescent methods.