426 resultados para Light.
Resumo:
2-(2-hydroxyphenyl)-5-phenyl-1, 3, 4-oxadiazole (HOXD), characteristic of excited state intramolecular proton-transfer (ESIPT), was synthesized and found to emit strong blue phosphorescence in the solid state at room temperature and at low temperature (77 K). The photoluminescent spectrum measurement in solution showed that there are two kinds of emission: fluorescence originated from the singlet state and phosphorescence derived from the triplet state in HOXD formed by ESIPT. For the photoluminescent spectrum in the solid state, only phosphorescence emission with the lifetime of 66 mus was observed. Multiple-layer light-emitting diodes with the configuration of ITO/NPB/HOXD/BCP/Alq(3)/Mg:Ag were fabricated using HOXD as emitter and the maximum brightness of 656 cd/m(2) and the luminous efficiency of 0.14 lm/W was obtained.
Resumo:
We report a blue organic light-emitting device having an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), that exhibits excited state intramolecular proton transfer (ESIPT). The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Electroluminescence spectra revealed a dominating peak at 450 nm and two additional peaks at 480 and 515 nm with a full width at half maximum of 50 nm. Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.
Resumo:
Two new poly(phenylenevinylene) (PPV) oligomers, 2,2'-(1,4-phenylenedivinylene)bis-8-acetoxy quinolines were synthesized via a Knoevenagel condensation reaction. The single-crystal X-ray diffraction study shows that there are intermolecular pi...pi interactions in the solid state of 2,2'(1,4-phenylenedivinylene)bis-8-acetoxyquinoline. Electroluminescent properties using these compounds as emitters have been investigated.
Resumo:
Electrical and optical properties of organic light-emitting diodes (OLEDs) with a stepwise graded bipolar transport emissive layer for a better control of charge transport and recombination are presented. The graded bipolar transport layer was formed by co-evaporating a hole-transporting material N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4(')-diamine (NPB) and an electron-transporting/emissive material tris-(8-hydroxyquinoline) aluminum (Alq(3)) in steps, where each step has a different concentration ratio of NPB to Alq(3). Compared to a conventional heterojunction OLED, electroluminescence efficiency was enhanced by a factor of more than 1.5, whereas the turn-on voltage remained unchanged in the graded structure.
Resumo:
Two series of highly soluble novel nitrogen- and sulfur-containing conjugated polymers were synthesized via an acid-induced self-polycondensation of functional monomers with methyl sulfinyl and aromatic groups. The well-defined structures of synthesized polymers were confirmed by their NMR and IR spectra. The highest occupied molecular orbital energy values for these materials, estimated by cyclic voltammetry, showed a broad range of values from about 5.0 to 5.2 eV used as hole-transport layers (HTL) in two-layer light-emitting diodes ITO/HTL/Alq(3)/Mg:Ag [ITO = indium tin oxide, and Alq(3) = tris(8-quinolinato) aluminum]. The typical turn-on voltage of these diodes was about 4-5 V. The maximum brightness of the device was about 3440 cd/m(2) at 20 V. The maximum efficiency was estimated to be 0.15 1m/W at 10 V.
Resumo:
In this paper, we study the effects of electrical annealing at different voltages on the performance of organic light-emitting diodes. The light-emitting diodes studied here are single-layer devices based on a conjugated dendrimer doped with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as the emissive layer. We find that these devices can be annealed electrically by applying a voltage. This process reduces the turn-on voltage and enhances the brightness and efficiency. We obtained an external electroluminescence quantum efficiency of 0.07% photon/electron and a brightness of 2900 cd m(-2) after 12.4 V electrical annealing, which are about 6 times and 9 times higher than un-annealing devices, respectively. The improved luminance and efficiency are attributed to the presence of a space charge field near the electrodes caused by charging of traps.
Resumo:
A novel alternating conjugated copolymer containing triazole and carbazole units was synthesized by the Wittig reaction. The resulting bipolar conjugated polymer emits a pure light with good thermal stability, which is a promising candidate for polymer light emitting display.
Resumo:
Biphenyl- (Biph-) containing 1-alkynes (3 and 4) and their polymers (1 and 2) with varying bridge groups and spacer lengths were synthesized and the effects of the structural variation on their properties, especially their mesomorphism and photoluminescence behaviors, were studied. The acetylene monomers 3(3) [HCdropC(CH2)(3)O-Biph-OCO(CH2)(10)CH3] and 4(m) [HCdropC(CH2)(m)OCO-Biph-OCO(CH2)(10)-CH3, m = 3, 4] were prepared by sequential etherization and esterification reactions of 1-alkynes. While 3(3) exhibits enantiotropic crystal E and SmB mesophases, its structural cousin 4(3) displays only a monotropic SmB phase. Enantiotropic SmA and SmB mesophases are, however, developed when the spacer length is increased to 4. Polymerizations of the monomers are effected by Mo-, W-, Rh-, and Fe-based catalysts, with the WCl6-Ph4Sn catalyst giving the best results (isolation yield up to 85% and M-w up to 59000). The polymers were characterized by IR, UV, NMR, TGA, DSC, POM, XRD, and PL analyses. Compared to 1(3), 2(3) shows a red-shifted absorption, a higher T-i, and a better packed interdigitated bilayer SmA(d) structure, while the mesophase of 2(4) involves monolayer-packing arrangements of the mesogens. Upon photoexcitation, 1(3) emits almost no light but 2(m) gives a strong ultraviolet emission (lambda(max) similar to 350 nm), whose intensity increases with the spacer length.
Resumo:
A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.
Resumo:
Organic electroluminescent devices with a structure of ITO/ploy (9-vinylcarbazole)/tris (8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag are fabricated at different substrate temperatures (77, 298, and 438 K) during Alq3 deposition. It is found that the surface morphologies of Alq3 thin films greatly affect the I-V characteristics of the devices by the contact area between metal cathode and light-emitting layer. There is an increase in the luminous efficiency of the devices in the order 77 K < 298 K < 438 K. We attribute this trend to different structures of Alq3 thin films. (C) 2001 American Institute of Physics.
Resumo:
A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Copolymers containing alternating flexible aliphatic blocks and rigid poly(p-phenylenevinylene) (PPV) blocks were synthesized and characterized. It was found that the fluorescent intensity increases with increasing length of the flexible blocks. Bright blue-light emitting diodes were fabricated using PPV copolymers as electroluminescent layers. The devices show 190 cd/m(2) light-emitting brightness at 460 nm and 15 V rum-on voltage. The effects of oxadiazole derivative PBD and tris(8-hydroxyquinoline) aluminum Alq(3) electron-transporting layers on the luminance and stability of the devices are discussed.
Resumo:
A soluble polymer emitting green color with high efficiency was synthesized. Bright green electroluminescence devices, both single layer and multilayer, were fabricated. The luminous efficiency was improved dramatically. Carrier injection from the electrodes to the emissive layer and concomitant green electroluminescence from the emissive layer were observed. A luminance of 920 cd/m(2) and luminous efficiency of 5.35 1m/W were achieved at a drive voltage of 15 V for the multilayer device. (C) 1997 Elsevier Science S.A.