397 resultados para spectra properties
Resumo:
The present paper reports the methods for preparing and isolating 8 kinds of 1:12 molybdenum series of heteropoly blue complexes KyHzXMo12O40 . nH2O (X=Si, P, As, Ge). The products were characterized by elemental analyses, potential titration, polarograms, cyclic voltammetry, IR spectra, visible-UV spectra, X-ray powder diffraction, XPS and P-31 NMR. The single crystal structure of 4-electron molybdenum-silicon heteropoly blue was measured and the positions of reduced molybdenum atoms were determined, i.e. they were located at Mo(3), Mo(7), Mo(8) and Mo(10). The experimental results show that the heteropoly blue remains Keggin structure. ESR spectra of heteropoly blue solids were first studied, from which it was found that the delocalization extent of 2-electron heteropoly blue and 4-electron heteropoly blue is smaller than that of 1-electron heteropoly blue. The study of thermal properties shows that the thermal stability increases with the increase of the reduction extent of heteropoly blue. The study of redox properties shows that the oxidizing power order of heteropoly blue changes in different mediums, and the polarographic half-wave voltage is found to be dependent on the electronegativity of the hetero atom linearly. It is found that the phosphorus heteropoly blue and arsenic heteropoly blue show a strong anti-acid property.
Resumo:
The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using delta-TiCl3-Et2AlCl as a catalyst system. The results indicate that the intrinsic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP / EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.
Resumo:
Polyoxypropylene glycol (PPG) (or castor oil) and toluene diisocyanate (TDI) were mixed, and the prepolymer polyurethane (PU) (I) was formed. Vinyl-terminated polyurethane (II) was prepared from (I), and hydroxyethyl acrylate, AB crosslinked polymers (ABCPs) were synthesized from (II) and vinyl monomers such as styrene, methyl methacrylate, vinyl acetate, etc. The dynamic mechanical properties and morphology of ABCPs were measured. The ABCPs based on PPG have double glass transition temperatures (T(g)) on the sigma-vs. temperature curves. They display a two-phase morphology with plastic components forming the continous phase and PU-rich domains forming the separated phase on the electron micrographs. Irregular shapes and a highly polydisperse distribution of PU-rich domain sizes were observed. The crosslink density of ABCPs has a notable effect on the morphology and properties. The average diameter of the PU-rich domains depends on the molecular weight of prepolymer PPG. The highly crosslinked structures will produce large numbers of very small domains. ABCPs based on castor oil show a single T(g) relaxation on the dynamic mechanical spectra. The compatibility between the two components is much better in ABCPs based on castor oil than in those based on PPG, because there is a high crosslink density in the former. Comparison of the dynamic mechanical spectra of ABCP and interpenetrating networks (IPN) based on castor oil with similar crosslink density and composition imply that the two components in ABCP are compatible whereas microphase separation occurs in IPN. An improvement in the compatibility is achieved by the crosslinking between the two networks.
Resumo:
Three samples of β-carboxyethyl-germanium sesquioxide (Ge-132) have been prepared with different methods. Their IR, Raman, XPS, TG-DTA and FAB-MS spectra are quite different and indicate that they have different degree of polymerization and molecule structures. In the aqeous solution, all of them interaot strongly with fructose, but not with polypeptides such as GSH and GSSG. This faot may be important in understanding the bioactivity of Ge-132.
Resumo:
Polysiphonia urceolata R-phycoerythrin and Porphyridium cruentum B-phycoerythrin were degraded with proteinaseK, and then the nearly native gamma subunits were isolated from the reaction mixture. The process of degradation of phycoerythrin with proteinaseK showed that the gamma subunit is located in the central cavity of (alpha beta)(6) hexamer of phycoerythrin. Comparative analysis of the spectra of the native phycoerythrin, the phycoerythrin at pH 12 and the isolated gamma subunit showed that the absorption peaks of phycoerythrobilins on alpha or beta subunit are at 535 nm (or 545 nm) and 565 nm, the fluorescence emission maximum at 580 nm; the absorption peak of phycoerythrobilins on the isolated gamma subunit is at 589 nm, the fluorescence emission peak at 620 nm which overlaps the absorption maximum of C-phycocyanin and perhaps contributes to the energy transfer with high efficiency between phycoerythrin and phycocyanin in phycobilisome; the absorption maximum of phycourobilin on the isolated gamma subunit is at 498 nm, which is the same as that in native phycoerythrin, and the fluorescence emission maximum at 575 nm.
Resumo:
Five hydrotalcites with Mg/Al molar ratio range of 3-15 were prepared. The structure and basicity of Mg-Al mixed oxides (Mg(Al)O) transformed from hydrotalcites were investigated by TPD, XPS, XRD, FT-IR and NMR techniques. The results of elemental analysis and XPS indicate that Al is enriched in the surface regions of Mg(Al)O, and its amount increases with the Mg/Al molar ratio and, the calcination temperature. Al-27-MAS-NMR results show that Al exists in two chemical environments: tetrahedral aluminium (Al(t)) and octahedral aluminium (Al(o)) in Mg(AI)O. The amount of Al(t) increases with the Mg/Al molar ratio and the calcination temperature. It is assumed that Al(t) may be mainly from the surface Al. Temperature-programmed desorption (TPD) of CO2 shows that the number of basic sites of Mg(Al)O samples increases with the Mg/Al molar ratio, and the maximum number of basic sites is obtained for hydrotalcite calcined at 773 K. Infrared spectra of adsorbed CO2 and B(OCH3)(3) reveal that there are two kinds of basic sites: weak basic OH- sites and strong basic O2- sites on the Mg(AI)O samples, the base strength depends on the Mg/Al molar ratio and calcination temperature.
Resumo:
To elucidate the physicochemical properties of silk protein, we studied the effects of calcium chloride and ethanol on the gelation of fibroin. Fibroin was treated with 5.0 M calcium chloride in water (Ca/W) or 5.0 M calcium chloride in 20% (v/v) ethanol (Ca/Et) and the rheological properties of colloidal fibroin were investigated. The Ca/W-treatment promoted an increased rate of gelation and gave higher gel strength than the Ca/Et-treatment. The maximum gel strengths of Ca/W- and Ca/Et-treated fibroins were obtained at pH 7.0 and pH 5.5, respectively. Scanning electron micrographs showed that the Ca/W-treated fibroin gel had a more developed three-dimensional molecular network than the Ca/Et-treated gel. Further, FT-IR spectra suggested that Ca/W-treated fibroin has more of a beta-structure than Ca/Et-treated one in colloidal conditions. This study indicated that the use of calcium chloride alone was more beneficial to the gelation of fibroin than combined use with ethanol.